• Title/Summary/Keyword: concrete structure

Search Result 4,597, Processing Time 0.034 seconds

Consideration on the Risk of Corrosion Assessment in Reinforced Concrete Structure by Corrosion Potential Criterion (부식전위 기준에 의한 철근콘크리트 구조물의 부식진단의 위험성에 관한 고찰)

  • Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Corrosion of steel reinforcement is a major factor in the deterioration of harbour and bridge structure. Steel corrosion in concrete must be checked for assessing the condition of a reinforced concrete structure. There are several ways how to measure the corrosion condition of reinforced concrete, but the corrosion potential measurement is a very simple, rapid, cost-effective and non-destructive technique to evaluate the severity of corrosion in reinforced concrete structure, therefore commonly used by engineers. However some particular situations may not relate to the reinforcement corrosion probability and a simple comparison of the corrosion potential data with the ASTM C876 Standard on steel reinforcement corrosion probability could be meaningless and not give reliable informations because of environment factors as oxygen concentration, chloride content, concrete resistance. Therefore this paper explains the risk of corrosion assessment in reinforced concrete structure and how many factors can affect the reliability of the corrosion potential data.

Finite Element Analysis of the Effect of Chloride Ion on the Coastal Concrete Structure with Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 해양콘크리트 구조물의 염분침투해석)

  • 여경윤;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.945-950
    • /
    • 2000
  • Coastal concrete structure is harmed by physical and chemical action of sea water, impact load, meteorological effect and etc. especially, premature reinforcement corrosion in concrete exposed to sea water has an important problem. In this study, the behavior of chloride ions penetrated through the coastal concrete structure with ordinary portland cement or ground granulated blast furnace slag(GGBFS) was modeled. The physicochemical processes including the diffusion of chloride and the chemical reaction of chloride ion with calcium silicate hydrate and the other constituents of hardened cement paste such as$C_3A$ and $C_4AF$were analyzed by using the Finite Element Method. From analysis result, the corrosion of concrete structure with GGBFS begins 1.69~1.76 times later than that of concrete structure with ordinary portland cement.

Simplified Algorithm of the Novel Steel-concrete Mixed Structure under Lateral Load

  • Li, Liang;Li, Guo-qiang;Liu, Yu-shu
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • In order to improve the seismic behaviors of traditional steel-concrete mixed structure, a novel steel concrete mixed structure consisting of steel frames braced with buckling restrained braces (BRBs) and a concrete tube is proposed. Based on several assumptions, the simplified mechanical model of the novel mixed structure is established, and the shear and bending stiffness formulas of the steel frames, BRBs and concrete tube are respectively introduced. The equilibrium differential equation of the novel mixed structure under horizontal load is developed based on the structural elastic theory. The simplified algorithms to determine the lateral displacement and internal forces of the novel mixed structure under the inverted-triangle distributed load, uniformly load and top-concentrated load are then obtained considering several boundary conditions and compatible deformation conditions. The effectiveness of the simplified algorithms is verified by FEM comparison.

The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement (콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교)

  • 장상엽;김용철;조용범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF

A Study on Minimizing for Hydration Heat Cracks of a Subway Concrete Box Structure (콘크리트 BOX 구조물의 수화열에 의한 온도균열제어 대책)

  • Kim, Eun-Kyum;Jeon, Chan-Ki;Jeon, Joong-Kyu;Bae, Sang-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.705-708
    • /
    • 2006
  • The bigger of concrete structures by a construct technique improvement, and the increase of the cement quantity which is caused by with use of the high-strength concrete for the load-carrying-capacity and a durability cause temperature cracks by a heat of hydration. The temperature crack due to the heat of hydration classified a nonstructural crack. but it has a bad effect on durability of concrete structures. especially, in case of a subway concrete box structure, when a water-proof facilities is beaked on an outer-wall, the water leakage occurs through a penetration crack generated from a wall of the concrete structure too. This paper, for the subway concrete box structure, which is located in chloride attack region, the use of blended cement, the temperature of air and concrete, was considered and analysed by a three dimensional finite element method.

  • PDF

Test for Concrete Crack Depth Measurement Using Ultrasonic Pulsevelocity Technique (초음파 속도를 이용한 콘크리트의 균열깊이 측정)

  • 이장화;김성욱;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.117-120
    • /
    • 1991
  • Cracks of concrete structure must be analyzed and estimated synthetically in order to have a maintenance and to insure the safety and the durability of structure. Concrete cracks have to be surveyed with respect to depth, width, shape and direction etc, but crack depth among these items is not measured easily. Occasionally, it needs to measure the crack depth of concrete structure for the purpose of evaulating the safe capacity and the necessity of repair. Therefore, this research is performed to verify the applicability and the accuracy of Ultra-sonic Pulse Velocity Technique(Tester), in non-destructive testing methods of concrete crack depth.

  • PDF

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

An Experimental Study on the Mock-up test take advantage of the High Strength Concrete (초고강도 콘크리트를 이용한 CFT실물대 실험)

  • Son Young Jun;Kim Jae Eun;Yang Dong Il;Jung Keun Ho;Lim Nam Gi;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.458-461
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence. to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete $(800kg/cm^2)$ especially for CFT through the data from the real size mock-up.

  • PDF

A Study on the Meassurement Technology of Thermal Stress in Massive Concrete Structure (매스콘크리트구조물에서의 온도응력 측정기법에 관한 연구)

  • 강석화;정철헌;이용호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.71-76
    • /
    • 1994
  • Recently, constructions of huge reinforced concrete structures such as nuclear power stations have been increased. When massive concrete is placed, cracking due to the hydration heat of cement is recognized as a major problem. The development of thermal stress is influenced by the structure shape and the constraint conditions, and cracks usually occure from tensile stresses which developed due to temperature drop. In this study a protocol specimen is made to examine the distribution of temperature and thermal stress of reaction wall of Daewoo Institute Construction Technology. The size of the specimen is made by considering minimum size of real structure. In this study, concrete strain gauge, concrete stress gauge, concrete non-stress gauge, and thermocouples, are instrumented to measure thermal stress in massive concrete structure. A new measuring technique is proposed to calculate thermal stress.

  • PDF

An experimental study on surface performance improvement of concrete influencing on resistance to chloride (콘크리트의 표면성능개선이 염소이온투과저항성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jae-Sung;Kang, Suk-Pyo;Hong, Sung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.782-785
    • /
    • 2004
  • Salt attack is one of the serious deterioration factor with respect to the durability of concrete structure. Especially, in case of exposed rebar concrete structure in marine environment, corrosion of rebar is accelerated by penetration of $Cl^-$ from exterior. Through this path, volume of corroded rebar is increased about two and half times due to increased inner pressure originated from rust. As a consequence, the overall deterioration of concrete structure, namely, cracks, reduction of adhesive strength and pop-out is followed. In this paper, the effect of structure treatment of concrete on chloride resistance has been investigated. At the same time, the relationship among several characteristics, such as resistance to chloride, water absorption coefficient and surface hardness of concrete has been investigated. It is believed that surface performance improvement by the application of penetrative hardening agent influences on positively water absorption coefficient, surface hardness of concrete and resistance to chloride ion penetration.

  • PDF