• Title/Summary/Keyword: concrete strength prediction

Search Result 725, Processing Time 0.019 seconds

Clustering-based identification for the prediction of splitting tensile strength of concrete

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 2009
  • Splitting tensile strength (STS) of high-performance concrete (HPC) is one of the important mechanical properties for structural design. This property is related to compressive strength (CS), water/binder (W/B) ratio and concrete age. This paper presents a clustering-based fuzzy model for the prediction of STS based on the CS and (W/B) at a fixed age (28 days). The data driven fuzzy model consists of three main steps: fuzzy clustering, inference system, and prediction. The system can be analyzed directly by the model from measured data. The performance evaluations showed that the fuzzy model is more accurate than the other prediction models concerned.

Prediction of compressive strength of concrete using neural networks

  • Al-Salloum, Yousef A.;Shah, Abid A.;Abbas, H.;Alsayed, Saleh H.;Almusallam, Tarek H.;Al-Haddad, M.S.
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

Long-Term Performance of High Strength Concrete

  • Choi Yeol;Kang Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.425-431
    • /
    • 2004
  • This paper describes an experimental investigation of how time-dependent deformations of high strength concretes are affected by maximum size of coarse aggregate, curing time, and relatively low sustained stress level. A set of high strength concrete mixes, mainly containing two different maximum sizes of coarse aggregate, have been used to investigate drying shrinkage and creep strain of high strength concrete for 7 and 28-day moist cured cylinder specimens. Based upon one-year experimental results, drying shrinkage of high strength concrete was significantly affected by the maximum size of coarse aggregate at early age, and become gradually decreased at late age. The larger the maximum size of coarse aggregate in high strength concrete shows the lower the creep strain. The prediction equations for drying shrinkage and creep coefficient were developed on the basis of the experimental results, and compared with existing prediction models.

Prediction of strength development of fly ash and silica fume ternary composite concrete using artificial neural network (인공신경망을 이용한 플라이애시 및 실리카 흄 복합 콘크리트의 압축강도 예측)

  • Fan, Wei-Jie;Choi, Young-Ji;Wang, Xiao-Yong
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Fly ash and silica fume belong to industry by-products that can be used to produce concrete. This study shows the model of a neural network to evaluate the strength development of blended concrete containing fly ash and silica fume. The neural network model has four input parameters, such as fly ash replacement content, silica fume replacement content, water/binder ratio, and ages. Strength is the output variable of neural network. Based on the backpropagation algorithm, the values of elements in the hidden layer of neural network are determined. The number of neurons in the hidden layer is confirmed based on trial calculations. We find (1) neural network can give a reasonable evaluation of the strength development of composite concrete. Neural network can reflect the improvement of strength due to silica fume additions and can consider the reductions of strength as water/binder increases. (2) When the number of neurons in the hidden layer is five, the prediction results show more accuracy than four neurons in the hidden layer. Moreover, five neurons in the hidden layer can reproduce the strength crossover between fly ash concrete and plain concrete. Summarily, the neural network-based model is valuable for design sustainable composite concrete containing silica fume and fly ash.

Support vector machine for prediction of the compressive strength of no-slump concrete

  • Sobhani, J.;Khanzadi, M.;Movahedian, A.H.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.337-350
    • /
    • 2013
  • The sensitivity of compressive strength of no-slump concrete to its ingredient materials and proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It was known that the problem of compressive strength prediction owes high degree of complexity and uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical and mineral additives, superimposes the problem's complexity. Traditionally this property of concrete is predicted by conventional linear or nonlinear regression models. In general, these models comprise lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results showed that after optimization process, both models are applicable for prediction purposes with similar high-qualities of estimation and generalization norms; however, it was indicated that optimization and modeling with SVM is very rapid than ANN models.

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

Strength Prediction Equations of High Strength Concrete by Schmidt Hammer Test (슈미트 해머 시험법에 의한 고강도 콘크리트의 강도 추정식)

  • Park Song Chul;Yoo Jae Eun;Kim Min Su;Kwon Young Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.615-618
    • /
    • 2005
  • This study concerns the equation of high strength concrete by schmidt hammer test. There are not only few prediction strength equations of concrete by schmidt hammer test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of schmidt hammer test with in existing 1,095days' concrete structures and proposed equations as follows ; Linear: ${\Large f}_{ck}=-45.35+2.44R(r^2=72.7\%)$ Quadratic: ${\Large f}_{ck}=-502.08+24.0R-0.25R^2(r^2=82.4\%)$ here, $f_{ck}$ : Estimated compressive strength of concrete by MPa, R : Rebound index of concrete

  • PDF

An Experimental Study in Strength Control by Prediction Strength of Concrete using Equivalent Age in Construction Field (등가재령을 이용한 콘크리트의 강도 예측에 의한 건설생산현장에서의 강도관리에 관한 실험저 연구)

  • 주지현;최성우;박선규;김배수;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.287-290
    • /
    • 2000
  • Nowadays, strength control is performed by test of compressive strength of concrete which is taken in construction filed. But because it is possible to confirm only compressive strength of concrete by that way, it is difficult to performing strength control pr process plan, So, if we can predict compressive strength of concrete, we can decide when shores and forms can be removed safety, plan process efficiently. This study intends to propose basic data for strength control as determination the time of forwoak removal through investigating propriety of strength prediction using Freiesleben function.

  • PDF

An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;shariati, Mahdi
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.785-809
    • /
    • 2014
  • In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.