• Title/Summary/Keyword: concrete section size

Search Result 135, Processing Time 0.025 seconds

Study on behavior of T-section modular composite profiled beams

  • Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.457-473
    • /
    • 2010
  • In this study, specimens were made with profile thicknesses and shear reinforcement as parameters. The bending and shear behavior were checked, and comparative analysis was conducted of the results and the theoretical values in order to see the applicability of T-section Modular Composite Profiled Beams (TMPB). In TMPB, the profiles of formwork functions play a structural role resisting the load. Also, the module concept, which is introduced into TMPB, has advantages: it can be mass-produced in a factory, it is lighter than an existing H-beam, it can be fabricated on the spot, and its section size is freely adjustable. The T1 specimens exhibited ductile behavior, where the whole section displayed strain corresponding to yielding strain at least without separation between modules. They also exhibited maximum strength similar to the theoretical values even if shear reinforcement was not applied, due to the marginal difference between shear strength and maximum bending monment of the concrete section. A slip between modules was incurred by shear failure of the bolts in all specimens, excluding the T1 specimen, and therefore bending moment could not be fully displayed.

A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Shear Reinforcement Ratio and Beam Section Size (전단철근비와 보의 단면크기에 따른 철근콘크리트 보의 전단강도 특성 연구)

  • Noh, Hyung-Jin;Yu, In-Geun;Lee, Ho-Kyung;Baek, Seung-Min;Kim, Woo-Suk;Kwak, Yoon-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.111-119
    • /
    • 2019
  • The purpose of this study is to investigate the shear strength of reinforced concrete beam according to beam section size and shear reinforcement ratio. A total of nine specimens were tested and designed concrete compressive strength is 24 MPa. The main variables are shear reinforcement ratio and beam section size fixed with shear span to depth ratio (a/d = 2.5), the tensile reinforcement ratio (${\rho}=0.013$) and width to depth ratio (h/b = 1.5). The test specimens were divided into three series of S1 ($225{\times}338mm$), S2 ($270{\times}405mm$) and S3 ($315{\times}473mm$), respectively. The experimental results show that all specimens represent diagonal tensile failure. For $S^*-1$ specimens (d/s=0), the shear strength decreased by 33% and 46% with increasing the beam effective depth, 26% and 33% for $S^*-2$ specimens (d/s=1.5) and 16% and 20% for $S^*-3$ specimens (d/s=2.0) respectively. As the shear reinforcement ratio increases, the decrease range in shear strength decreases. In other words, this means that as the shear reinforcement ratio increases, the size effect of concrete decreases. In the S1 series, the shear strength increased by 39% and 41% as the shear reinforcement ratio increased, 54% and 76% in the S2 series and 66% and 100% in the S3 series, respectively. As the effective depth of beam increases, the increase range of shear strength increases. This means that the effect of shear reinforcement increases as the beam effective depth increases. As a result of comparing experimental values with theoretical values by standard equation and proposed equation, the ratio by Zsutty and Bazant's equation is 1.30 ~ 1.36 and the ratio by KBC1 and KBC2 is 1.55~.163, respectively. Therefore, Zsutty and Bazant's proposed equation is more likely to reflect the experimental data. The current standard for shear reinforcement ratio (i.e., $S_{max}=d/2$) is expected to be somewhat relaxed because the ratio of experimental values to theoretical values was found to be 1.01 ~ 1.44 for most specimens.

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Bending Property of Composited Ductile Fiber Reinforced Cementitious Composite, DFRCC (고인성 섬유보강 시멘트 복합재료의 복합구성에 의한 휨 특성)

  • 김규용;손유신;양일승;후쿠야마히로시;윤현도;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.367-372
    • /
    • 2003
  • Fiber Reinforced Cementitious Composite, DFRCC has strain hardening property with multiple crack in failed of compressive, tensile, bending force, concrete is not so that. But DFRCC could not use to the building element for which has not structural stiffness only has ductile property. DFRCC is used for repair only in recently. In that reason, we considered the concrete of light weight concrete, porous concrete, mortar complex with DFRCC. and DFRCC reinforced by fiber net, steel bar. In this study, results of experiment on complex method of concrete and DFRC were shown as follows; The complex methods of concrete lay on DFRCC, sandwich layer composition were effective for bending force depending on section size each layer, and reinforce DFRCC by fiber net, steel bar was effective method also.

  • PDF

Fire Resistance Performance of FRP Rebar Reinforced Concrete Columns

  • Wang, Hui;Zha, Xiaoxiong;Ye, Jianqiao
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.111-117
    • /
    • 2009
  • Concrete columns reinforced with Fibre Reinforced Polymer (FRP) rebar have been increasingly used in civil engineering applications, while the research on fire resistance of such structural members is still very limited. In this paper, attempts are made to predict temperature distribution and mechanical performance of FRP rebar reinforced concrete columns in fire. The effect of concrete cover and section size on fire resistance time is studied by the finite element method. Based on a parametric study, a simple empirical formula to predict fire resistance time is proposed for possible adoption in fire resistance design.

Spalling and Ultrasonic Pulse Transmission Time of Ring-Type Restrained Concrete exposed to High Temperature (고온에 노출된 링형 강관 구속 콘크리트의 폭렬 및 초음파투과시간)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Pyeon, Su-Jeong;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.174-175
    • /
    • 2019
  • In this study, the spalling and ultrasonic pulse transmission time of concrete were investigated according to compressive strength during heating. As a result, the higher the compressive strength of the concrete, the more the explosion occurs, which affects the cross-sectional loss and the spalling fragment size. Also, ultrasonic pulse transmission time was found to be strongly influenced by the section loss of concrete.

  • PDF

Analysis of Vibration Modes of Small and Large Concrete Blocks Containing Flaws by Impact Resonance Method (충격 공진법에 의한 대소 경계조건하 콘크리트 블록 내부결함 신호의 해석)

  • Park, Seok-Kyun;Yoon, Seok-Soo
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.161-171
    • /
    • 1999
  • Impact resonance testing was carried out on small and large concrete blocks containing several types of artificial flaws respectively. Quantitative analysis of the observed peak frequencies in the impact resonance tests identifies the possible normal modes of concrete blocks containing flaws. and enables to determine the depth and size of the flaws in concrete blocks. In this study, concrete can be treated as a homogeneous and isotropic material. The flaw size and location at each section of artificial flaw series in small and large concrete blocks, determined through two-dimensional scanning of impact point and real-time fast Fourier transform, are in good agreement with real size location, respectively. Consequently, quantitative analysis method of vibration modes in the impact resonance tests, which can be applied for homogeneous and isotropic material, can be useful for the detection of flaws in any case of small and large concrete blocks in this study.

Effects of Specimen Shape on Hydration Heat and Autogenous shrinkage at an early (시험체 형상에 따른 고강도 콘크리트의 수화열 및 자기수축 초기특성 분석)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.915-918
    • /
    • 2008
  • Hydration heat and autogenous shrinkage are generated essentially by the same hydration. Many researchers have studied the close relationship between hydration temperature and autogenous shrinkage but hardly any research has been undertaken to explain the specific numerical relation. In this study, early age properties of hydration heat and autogenous shrinkage of specimen whose section size was changed were analyzed, and relationship between hydration heat and autogenous shrinkage was investigated. In the results of the study, inner temperature and autogenous shrinkage increased as the section size increased. And rise and rise ratio of hydration temperature and autogenous shrinkage in hydration heating section and autogenous shrinking section are increased too. Temperature rise and autogenous shrinkage rise increased respectively, as hydration heating velocity and autogenous shrinking velocity increased. And autogenous shrinkage rise and autogenous shrinking velocity increased as hydration heating velocity increased.

  • PDF

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

Experimental Evaluation on Strengthening of NSM and! Section Increment with FRP Rebars (FRP 보강근을 이용한 표면매립 및 단면확대공법의 실험적 성능평가)

  • 정상모;이차돈;원종필;황윤국;김정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.549-554
    • /
    • 2003
  • In order to overcome the brittle failure of strengthening with FRP-rebars inherent to their brittle properties, two approaches have been attempted. One is to improve the properties like ductile Hybrid FRP Rods, and the other is to develop a ductile strengthening with partially unbonded FRP rebars. Experiments on real size specimen were performed to evaluate the performance of NSM (Near Surface Mounted Strengthening) and SIM (Section Increment Methods) with FRP rebars. This paper discusses the results of the tests on 8 slab specimen in terms of flexural resistance, ductility, and fatigue. They show that NSM or S1M with FRP rebars are very effective measures to strengthen existing RC structures. Above all, strengthening with partially unbonded ductile Hybrid FRP Rods shows sufficient ductility similar to that of properly designed RC structures.

  • PDF