• Title/Summary/Keyword: concrete resistance

Search Result 2,950, Processing Time 0.026 seconds

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

Bond behavior of PP fiber-reinforced cinder concrete after fire exposure

  • Cai, Bin;Wu, Ansheng;Fu, Feng
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • To reduce the damage of concrete in fire, a new type of lightweight cinder aggregate concrete was developed due to the excellent fire resistance of cinder. To further enhance its fire resistance, Polypropylene (PP) Fibers which can enhance the fire resistance of concrete were also used in this type of concrete. However, the bond behavior of this new type of concrete after fire exposure is still unknown. To investigate its bond behavior, 185 specimens were heated up to 22, 200, 400, 600 or 800℃ for 2 h duration respectively, which is followed by subsequent compressive and tensile tests at room temperature. The concrete-rebar bond strength of C30 PP fiber-reinforced cinder concrete was subsequently investigated through pull-out tests after fire exposure. The microstructures of the PP fiber-reinforced cinder concrete and the status of the PP fibre at different temperature were inspected using an advanced scanning electron microscopy, aiming to understand the mechanism of the bonding deterioration under high temperature. The effects of rebar diameter and bond length on the bond strength of PP fiber-reinforced cinder concrete were investigated based on the test results. The bond-slip relation of PP fiber-reinforced cinder concrete after exposure at different temperature was derived based on the test results.

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.

A Experimental Study on the Flexural Behavior of Bundle Type Polyamide Fiber Reinforced Concrete (다발형 폴리아미드섬유 보강 콘크리트의 휨거동에 관한 실험적 연구)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.61-70
    • /
    • 2014
  • Synthetic fiber reinforced concrete is applicable to many applications for construction material. In general, synthetic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion free in fiber reinforced concrete. Recently, fiber reinforced concrete with macro synthetic fibers has been used to improve performance of structures in tunnel shotcrete, precast segmental lining and bridge slab and precast concrete structures. This study investigated the influence of bundled type polyamide fiber reinforced concrete on the flexural behavior in accordance with ASTM C 1609 and KS F 2566 standards.

Spalling Properties of 80MPa High Strength Concrete with Fiber (복합섬유(PP,NY)를 혼입한 설계강도 80MPa 3성분계 고강도콘크리트의 폭렬특성)

  • Kim, Seong-Deok;Lee, Bum-Sik;Bae, kee-Sun;Kim, Sang-yun;Park, Su-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.51-54
    • /
    • 2009
  • In this study, the fire resistance test was carried out with a parameter such as fiber(PP+NY) mixed ratio on high strength concrete with 80MPa, and the spalling resistance property was evaluated. Concrete material test was carried out with a parameter such as fiber(PP+NY) mixed ratio(0%, 0.05%, 0.1%, 0.2%) of high strength concrete with 80MPa. Although the flowability and the strength capacity were delicately decreased with a increase of fiber mixed ratio, they satisfied the target limits. As the spalling resistance property after the fire resistance test of 3 hours, the spalling was partly shown on the high strength concrete with fiber(PP+NY) mixed ratio of 0% but, wasn't shown on the high strength concrete with fiber(PP+NY) mixed ratio of 0.05% ~ 0.2%.

  • PDF

Prediction of Pumping Friction Resistance Coefficient in Pipe Influenced by Concrete Rheology Properties (콘크리트의 레올로지 특성에 따른 펌핑관내 마찰저항계수의 예측에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyoo;Kim, Jung-Chul;Lee, Kewn-Chu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for concrete pumping performance for the rapid construction of super-tall buildings. In this study, a quantitative evaluation of concrete fluid characteristics and surface friction resistance was performed, applying different concrete mix proportions and pumping conditions. To achieve this, we developed a temporary horizontal pumping evaluation system to measure pipe pressure and surface friction characteristics, and performed an experiment to investigate the relations between concrete rheology characteristics and friction resistance in pipe. The experiment found that in terms of the rheology characteristics, plastic viscosity was reduced remarkably after pumping. As well, high regression between the surface friction and pressure gradient was confirmed. This means that it is possible to evaluate the friction resistance between concrete and pipe by means of a pumping system that includes a frictional resistance testing pipe. In addition, high regression between the plastic viscosity of concrete after pumping and friction resistance coefficient was confirmed. Finally, it is considered that pumping pressure can be predicted using the friction resistance coefficient derived in this study, and it has high regression.

Effect of Air Void System of High Strength Concrete on Freezing and Thawing Resistance (고강도콘크리트의 동결융해저항에 미치는 기포조직의 영향)

  • 김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • It is generally known that the frost-resistance of concrete is much affected by the air content in concrete and by the air void system or air distribution. And also the frost-resistance is believed to vary with the stre¬ngth of concrete. This article is prepared to describe, based on experiment, the effect of the air content and the air void system, particularly the effect of the spacing factor, on the freeze-thaw resistance of the high strength conc¬rete. For this purpose, I first worked on Non-AE concrete to make its compressive strength set about 400 to 500 kg/em'. However, the freeze-thaw test on the Non-AE concrete resulted in low durability factor, I.e., 10-2~0%. Thus to enhance the durability, another supplementary step was needed. I used AE admixture. which enhanced durability by changing the air content from 2% to 12%. The frost-thaw test was then performed 500 cycles on the 20 kind of concrete mixtures which differ in unit cement content and in water-cement ratio. Keywords : frost -resistance, air content, air void system, air distribution, spacing factor, freeze-thaw test, dur ability factor. capillary cavity, Linear Traverse Method.

A New Method on the Prediction of Corrosion Resistance of Reinforced Concrete Using Accelerated Potentiometric Corrosion Method (전위차 부식촉진법을 이용한 철근 콘크리트의 내부식성 예측을 위한 새로운 기법 연구)

  • 오병환;조윤구;차수원;정원기
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.201-209
    • /
    • 1996
  • Recently, large scale concrete structures exposed to severe environment are increasingly built in various locations. The corrosion may severely affect the durability and service life of such a concrete structure. It is, therefore, necessary to develop durable concrete to enhance the corrosion resistance. The corrosion resistance of concrete can be identified through accelerated corrosion test. The purpose of the present paper is, therefore, to devise a reasonable and accurate method to predict the amount of corrosion of reinforcing steels. The proposed method which is basically based on the concept of Faraday's Law, determines the corroded amount of a rebar according to accelerated corrosion time. The corrosion is accelerated by employing the potentiometric corrosion test arrangement. The effects of admixtures in concrete including fly ash and silica fume have been also studied to explore the relative corrosion resistance of concrete.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay (접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.