• Title/Summary/Keyword: concrete recycling

Search Result 587, Processing Time 0.029 seconds

Utilization of Stone Sludge Produced by Stone Block Manufacturing Process as Concrete Admixtures (석재 가공시 발생한 석분슬러지의 콘크리트 혼화재료로의 활용)

  • Jeong, Jin-Seob;Lee, Jong-Cheon;Yang, Keek-Young;So, Kwang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.83-89
    • /
    • 2008
  • The stone sludge produced during the manufacturing process of stone blocks is considered as one of industrial waste materials. This stone sludge are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone sludge disposal like burying or stacking also cause environmental pollutions such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling of stone dust sludge as a concrete mixing material in order to extend recycling methods and to solve the shortage of aggregate caused by recently increased demand in construction. Based on the experiment results on various ratios of cement to stone sludge content, the compressive strengths of concrete were recorded in the range of $20{\sim}30N/mm2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone sludge produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

A Research on the Recycling of Ceramic Wastes as an Aggregate for Concrete (窯業廢棄物을 콘크리트용 骨材로 再活用하기 위한 硏究)

  • 문한영;김기형;신화철
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.41-49
    • /
    • 2001
  • In this study, the properties of cement mortar and concrete using ceramic wastes as fine aggregates and coarse aggregates are considered experimentally. Flow value of mortar using ceramic waste as fine aggregates is increased more or less, and the com- pressive strength of mortar using ceramic wastes as fine aggregates is increased with elapsed age. The slump value of concrete using ceramic wastes fine aggregates and coarse aggregates is somewhat decreased. The compressive strength of concrete using ceramic wastes as fine aggregates and coarse aggregates is lower than that of OPC concrete in early age, but has gradually increased in long ages.

  • PDF

A Study on the Properties of Concrete with the Kinds of Stabilizing Agent and Solid Content (회수수 안정화제 종류 및 고형분량 변화에 따른 콘크리트의 특성에 관한 연구)

  • Kim, Ki-Jeong;Kim, Guang-Hua;Lee, Mun-Hwan;Lee, Sea-Hyun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.113-117
    • /
    • 2003
  • In this study is investigated the various properties of concrete with the kinds of stabilizing agent of recycling water and solid content in order to suggest a practical use of recycling water. According to the results, fluidity and air content varies slightly with the kinds of stabilizing agent and solid content, but does not make a big difference. Setting time does not differ remarkably from plain concrete at 20℃, but is shortened with an increase of solid content. Bleeding is reduced more largely in the case of S than in the case of R, and is not influenced by solid content. Compressive strength is equal or decreases in comparison with plain concrete at solid content of I and 50%, and shows the highest value at solid content of 3%. Length change by drying shrinkage is larger than plain concrete at solid content of 5%, and decreases at solid content of I and 3%. Therefore, it proves that the influence of the kinds of stabilizing agent is minute, and solid content is most effective at 3%.

  • PDF

A Study on the Properties of Concrete with the Kinds of Stabilizing Agent and Solid Content (회수수 안정화제 종류 및 고형분량 변화에 따른 콘크리트의 특성에 관한 연구)

  • 김기정;김광화;이문환;이세현;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.113-117
    • /
    • 2003
  • In this study is investigated the various properties of concrete with the kinds of stabilizing agent of recycling water and solid content in order to suggest a practical use of recycling water According to the results. fluidity and air content varies slightly with the kinds of stabilizing agent and solid content, but does not make a big difference. Setting time does not differ remarkably from plain concrete at 2$0^{\circ}C$, but is shortened with an increase of solid content. Bleeding is reduced more largely in the case of S than in the case of R, and is not influenced by solid content. Compressive strength is equal or decreases in comparison with plain concrete at solid content of 1 and 5%, and shows the highest value at solid content of 3%. Length change by drying shrinkage is larger than plain concrete at solid content of 5%, and decreases at solid content of 1 and 3%. Therefore, it proves that the influence of the kinds of stabilizing agent is minute, and solid content is most effective at 3%.

  • PDF

An Experimental Study on Properties of Light-Weight Foamed Concrete Using the Waste Concrete Powder (폐콘크리트 미분을 사용한 경량기포콘크리트의 특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Lee, Jung-Goo;Kang, Cheol;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • The recycling program about waste concrete is being progressed to national research. But research on waste concrete powder which is occurred in control process of concrete powder is not enough. Waste concrete powder includes in $SiO_2,\;Al_2O_3$, and CaO so that the create of tobermorite is possibile through Hydrothermal Syntesis Reaction. Tobermorite have an advantage of high strength, sulphuric acid resistance and the lower drying shrinkage. Accordingly, this study investigate in properties of light-weight foamed concrete made with waste concrete powder. As a results, light-weight foamed concrete made with waste concrete powder is the higher than stone powder sludge of density and porosity, and the tower compressive strength. Therefore, it is thought that light-weight foamed concrete using waste concrete powder is possible.

  • PDF

Basic Characterization of Resource-recycling Secondary Products of Cement by Using Sludge Solids as The Main Material (회수수 슬러지 고형분을 주재료로 한 자원순환형 시멘트 2차 제품 생산의 기초적 특성 평가)

  • Kim, Min-Sung;Hong, Sung-Jun;Kim, Young-Jin;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.118-119
    • /
    • 2021
  • In this study, we confirmed the basic characteristics of paste and mortar 1:1, 1:2, 1:3 composition using concrete sludge solid content for the purpose of developing a resource-recycling cement secondary products. The 1:2 mortar formulation showed the best compressive strength. The steam curing strength is superior in the order of C20, BS40, BS20 and Control. it is judged that the FA combination is not suitable.

  • PDF

Strength Properties of Waste-tyre Recycling Concrete (폐타이어 혼입률에 따른 콘크리트 강도 변화에 관한 실험적 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.76-80
    • /
    • 2003
  • There will be a big problem in disposing of waste tie coming from the cars. Because many of these have been thrown away to the field and environmentally polluted. New, We need to find out how to dispose or recycle these waste material. It is thought that recycling this material especially mixing with concrete will be a good idea. This study is focused how each material do its behavior due to the size of waste type particle and its amount into concrete material. 0.4mm-10mm range of particle has been applied to the material : Also, 1.0%, 1.5%, 2.0% range of tyre particle proportion has been applied to make cylinder molds. The concrete mold with waste-tyre particle has vibration-absorbing ability. It is found that 0.4 -0.6mm particle mixing concrete has been more solid organized. And this waste tyre material could be applied to the general concrete, it is found.

An Experimental Study on the Application of Recyeled Aggregate Concrete Using the Demolished High Strength Conrete (Part 1 The Experimental Program and Preliminary Experiment) (고강도영역 재생골재 콘크리트의 현장적용을 위한 실험적 연구 (제 1보 실험계획 및 예비실험))

  • 김규용;최민수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.177-182
    • /
    • 1995
  • Large-scaling recycling of demolished concrete will contribute not only to the solution of a growing waste disposal problem. it will also help to conserve natural resoures of sand and gravel and to secure future supply of reasonly priced aggregates for builiding and other construction purposes within large urban areas. because recycled aggregate particles consist of substaintial amount of relatively soft cement paste component, it is less resistant to mechanical actions. With this view in mind, to obtain a reference data for the development of recycling system and to a basic data the guideline of recycled aggregate concrete construction and mix design, this study deals with the comparative analysis of the workability and engineering properties of recycled aggregate concrete according to the factors, such as blending ratio of recycled aggregate with the natural aggregate, addition of flyash, water cement ration.

  • PDF

The Study Concrete Brick Material of Recycle Cement Using (재생시멘트를 이용한 콘크리트벽돌의 물성 연구)

  • Seo Kyung-Ho;Park Cha-Won;Ahn Jae-Cheol;Hee Byeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.87-90
    • /
    • 2004
  • Serious problems of the environment protection and resource exhaustion are exhibited. due to the increase of the construction materials and activation of the remodeling, recently. Especially, most of the advanced countries. recycling plan for the waste concrete is vigorously progressing. The purpose of this study is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates form demolished concrete, we manufactured cement bricks to experiment overall performance in Korean Standard and feasible performances. On the recycled cement, in the case of cement : aggregate is 1 : 7 is satisfied with KS F 4004 : dimensions, water absorption, compressive strength of quality of a standard. So we concluded that it has great feasibility to apply these products to construction industry.

  • PDF

Recovering Hydration Performance of Cementitious Powder by Concret Waste according to Burning Temperature (폐콘크리트계 미분말의 소성조건에따른 수화성 회복)

  • 강태훈;정민수;안재철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.81-87
    • /
    • 2003
  • The purpose of this study is the development of a recycling process to recover the hydrated ability of cement hydrate which accounts for a large proportion of cementitious powder by concrete waste in order to recycle cementitious powder by concrete waste as recycle cement. Therefore, after having theoretical consideration based on the properties of high-heated concrete, we consider the properties of hydration of cementitious powder in hardened mortar under various temperature conditions. As a result of experiment, it is revealed that an effective development of recycling cement is possible since the cementitious powder by concrete waste recovers a hydraulic property during burning at $600^{\circ}C$ or $700^{\circ}C$. And it is shown that the fluidity of mortar decreases rapidly as the burning temperature of recycle cement increases. however, the improved effect of fluidity is predominant if adding the additive such as fly-ash or blast furnace slag.

  • PDF