• Title/Summary/Keyword: concrete recycling

Search Result 587, Processing Time 0.025 seconds

Development of High quality Recycled Aggregate Production Process from Waste Concrete for Resource Circulation System (자원순환형(資源循環型) 사회(社會) 구축(構築)을 위한 고품질(高品質) 순환골재(循環骨材) 생산(生産) 공정(工程) 개발(開發) 연구(硏究))

  • Kim, Kwan-Ho;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.27-35
    • /
    • 2009
  • To solve resource exhaustion and waste management problems caused by mass consumption, there are many efforts to change from resource consumption system to recycling system. Specially, interests about management of construction waste have increased, but efficient recycling system of waste concrete is not established yet. In this study, high quality recycled aggregate processing circuit was developed to recycle waste concrete. From the waste concrete which is a hydrated compound with coarse aggregate, fine aggregate, and cement material, high quality recycled coarse aggregate for concrete making was produced by autogenous milling and heat pretreatment method. After then, refinement process was performed to separate fine aggregate and cement material from waste concrete fines by sink float separation and hindered-settling separation. As a result, high quality recycled aggregate was produced from waste concrete by developed processing circuit.

An Experimental Study on the Application of Recycled Aggregate Concrete Using the Demolished High Strength Concrete -Part 2, In the case of hardened concrete- (고강도영역 재생골재 콘크리트의 현장적용을 위한 실험적 연구 -제2보 경화콘크리트 의 성상을 중심으로-)

  • 김규용;최희용;최민수;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.256-261
    • /
    • 1995
  • Large-scaling recycling of demolished concrete will concrete will contribute not only to the solution of a growing waste disposal problem, it will also help to consweve natural resoures of sand and gravel and to secure future supply of reasonly priced aggregates for building and other construction purposes within large urban areas. Because recycled aggregate particles consits of substantial amount of relatively soft cement paste component, it is less resistant to mechanical actions. With this view in mind, to obtain a reference data for the development of recycling system and to a basic data the guiedline of recycled aggregate concrete construction and engineering properties of recycled aggregate concrete according to the factors, such as blending ratio of recyced aggregete with the natural aggregate, addition to the factors, such as blending ratio of recycled aggregete with the natural aggregate, addition of flyash, water coment ratio.

  • PDF

Study on liquid carbonation using the recycling water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화에 관한 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Choi, Chang-Sik;Hong, Bum-Ui;Park, Jin-Won;Lee, Dae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.

A Experimental Study on Properties Matter of Recycle Aggregate Concrete Crush Method Waste-Concrete - Focused on the Recycle Aggregate used Electrical Crusher System in Underwater - (폐콘크리트 파쇄 방법에 따른 재생골재 콘크리트의 물성에 관한 실험적 연구 - 전기충격식 수중파쇄 시스템을 이용한 재생골재를 중심으로 -)

  • 박희곤;조상영;백민수;이영도;양극영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.51-55
    • /
    • 2002
  • The production accounts of domestic by-product is increased after 1990's. It is worried about the life reduction of dump land, as dump land's capacity have reached to limitation and the amount of construction industrial wastes is going higher Recently, Recycling aggregates could be gained from the reconstruction works using recycle process. and the study and research of recycle concretes developed concrete application methods, It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study, the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush. and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

  • PDF

An Investigation on Recycling of Prestressed Concrete Sleepers (프리스트레스트 콘크리트 침목의 재활용 기술에 대한 고찰과 기초 실험)

  • Jae-Young Lee;Uijun Lee;Jaewon Lee;Sunmo Yang;Seongwoo Gwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.316-323
    • /
    • 2023
  • The need for sustainable waste management has intensified the focus on recycling prestressed concrete sleepers used in railways. Given their high volume and environmental impact at the end of their service life, finding efficient recycling methods is crucial. This study explores current recycling approaches, particularly mechanical techniques, evaluating their advantages, limitations, and economic feasibility. Finally, an example of mechanical recycling was performed. The analysis results of the resulting recycled aggregates are suggested. Then, the non-cement concrete mixtures with recycled aggregates were designed, and their strength development was analyzed.

A Study on the Concrete Compressive Strength Characteristics mixing Stone Dust Produced by Stone Block Manufacturing (석재(石材) 가공(加工)시 발생한 석분(石粉)이 혼합된 콘크리트의 압축강도(壓縮强度) 특성(特性)에 관한 연구)

  • Chae, Young-Suk;Min, In-Ki;Song, Gab-Young
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.46-53
    • /
    • 2009
  • The stone dusts produced during the manufacturing process of stone blocks are considered as one of industrial waste materials. This stone dusts are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone dust disposal like burying or stacking also cause environmental pollution such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling stone dusts as a concrete mixing material in order to extend recycling methods. Based on the experiment results on various ratios of cement to stone dust content, the compressive strengths of concrete were recorded in the range of $20{\sim}30\;N/mm^2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone dusts produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

A Pilot Study on Emission Analysis of Air Pollutants Produced from Portable Recycling of Asphalt Concrete (간이이동법에 의한 폐아스콘 재생시 대기오염물의 배출분석에 대한 실험적 연구)

  • Lee, Byeong-Kyu;Kim, Haeng-Ah;Jeong, Ui-Ryang;Duong, Trang;Chae, Po-Gi;Park, Kyung-Won
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.385-392
    • /
    • 2007
  • Currently, portable equipment for recycling of waste asphalt concrete (ASCON) has been used. However, any air pollution control devices are not attached in the simple portable one. Thus, a lot of air pollutants have been produced from recycling processes of waste ASCON which resulted from aging of paved roads or repavement of roads. This study deals with a preliminary result of concentration analysis of air pollutants obtained from a pilot and a real recycling processes of waste ASCON using simple portable recycling equipment. Air pollutants were taken from 4 steps of the pilot recycling process including an initial heating by liquid petroleum gas (LPG), intermediate heating and melting (H&M) process, final H&M process, and pavement processes using recycled ASCON at the recycling site. Also, air pollutants were taken front 4 steps of the real recycling processes including an initial H&M, final H&M and mixing, loading of recycled ASCON to dump trucks, and at the recycling site after leaving the loaded dump trucks for real pavement sites. The air pollutants measured in this study include volatile organic compounds (VOCs), aldehydes, particulate matter (PM: PM1, PM2.5, PM7, PM10, TSP (total suspended particulate)). The identified concentrations of VOCs increased with increasing time or degree for H&M of waste ASCON. In particular, very high concentrations of the VOCs at the status of complete melting, which is exposed to the air, of the waste ASCON just before paving tv the recycled ASCON at the recycling site. Also, considerable amount of VOCs were identified from the recycling equipment after the dump trucks leaded by recycled ASCON leaved the recycling site for the pavement sites. The relative level of formaldehyde exceeded 80% of the aldehydes Identified in the recycling processes. This is because the waste ASCON is exposed to direct flame of LPG during H&M processes. The PM concentrations measured in the winter recycling processes, such as the loading and rotation processes of waste ASCON into/in the recycling equipment for H&M, were much higher than those in the summer ones. In particular, the concentrations of coarse particles such as PM7 and PM10 during the winter recycling were very high as compared those during the summer one.