• 제목/요약/키워드: concrete pier

검색결과 298건 처리시간 0.024초

주철근 겹침이음 및 횡철근 상세에 따른 철근콘크리트 다주교각의 거동특성에 관한 실험적 연구 (An Experimental Study on the Behavior of Reinforced Concrete Multi-Column Piers with Different Longitudinal and Transverse Reinforcement Details)

  • 김재관;김익현;김정한;조대연
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.211-219
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that the ductility of the model in transverse direction is rather higher than in longitudinal direction because of formation of several plastic hinges and that the ultimate displacement and the energy absorbtion capacity are enhanced by using continuous longitudinal bars instead of lap-splice ones. And it is confirmed that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier.

  • PDF

PREFLEX BEAM 제작시의 용접부 역학적 특성에 관한 연구 (A Study on the Analysis for Welding Residual Stress of Preflex Beam)

  • 방한서;주성민;안해영
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.65-71
    • /
    • 2003
  • Since the preflex beam is fabricated through welding, the pre-compressive stresses that should occur over the concrete pier are diminished by the welding residual stresses. Therefore welding residual stresses must be relieved during the fabrication. Therefore, the analysis and examination of the accurate welding residual stress distribution characteristics are necessary. In this study, accurate distribution of welding residual stress of the preflex beam is analyzed by the finite element method, using 2 dimensional and 3 dimensional elements. Further, the thermo-mechanical behavior of the preflex beam is also studied. After the finite element analysis, real distribution of welding residual stress is measured using the sectioning method, and then is compared with the simulation results. The distribution of welding residual stress by finite analysis agreed well with the experimental results.

생애주기비용을 고려한 PSC-I형 교량의 최적설계 (Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost)

  • 박장호;신영석
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

FCM 으로 가설되는 P.C 박스거더교의 횡단면 최적설계 (The Cross Section Optimization of P.C Box-Girder Bridge Constructed by Free Cantilever Method)

  • 방명석;김일곤;조현준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.56-60
    • /
    • 1991
  • Free Cantilever Method(FCM) is one of the most effective construction methods when precast prestressed concrete box girders are erected in the construction site. The special feature of FCM is that precast segments are erected in cantilever on the pier and connected in the middle of span to form the complete superstructure. Therefore each structural subsystem will be shown in each construction step and it should be analyzed for design whenever the segment is erected. In this study, the computer program was developed to optimally design the P.C box girder bridge considering tile construction sequence and verified by comparing the calculated results with the data of existing P.C box girder bridges. the sensitivity analysis was performed to show the efficiency of the developed program.

  • PDF

유한요소법에 의한 PREFLEX BEAM의 용접열분포 특성에 관한 연구 (A Study on the Numerical Analysis of Welding Heat Distribution of Preflex Beam)

  • 방한서;주성민;김하식
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.52-57
    • /
    • 2004
  • Preflex beam is a method of construction designed to hold the pre-compressive stresses over the concrete pier by the preflexion load. During the fabrication of the girder, welding causes residual stresses. The welding residual stresses must be relieved in order to generate the accurate compressive pre-stresses. In this study, to determine the thermal distribution characteristics on the girder by welding, both three-dimensional finite element analysis and two-dimensional finite element analysis, in a quasi-steady state, is carried out. After comparing each result between the three-dimensional analysis and the two-dimensional analysis, finite element analysis is carried out against the actual girder, and the welding thermal distribution characteristic over the preflex beam is analyzed. It is possible to provide the input data for the analysis of the welding residual stresses.

교각 비선형 거동을 고려한 낙교위험분석 (Unseating Failure of Bridge Spans with Nonlnear Pier Motion under Seismic Excitations)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.128-135
    • /
    • 1998
  • In this study, the unseating failure of the bridge spans under seismic excitations is examined by investigation the nonlinear response behaviors of the bridge system with reinforced concrete piers. To reduce the computational effort and to consider the effect of the foundation motions, a simplified 3 degree-of-freedom model is proposed, which retains the dynamic characteristics of the original bridge motions in concern. To imply the nonlinear behaviors of the RC piers to the system. a hysteresis model is utilized from the calculated force-deformation curve for the piers. The statistical characteristics of the maximum response displacements are obtained from the simulation results of 1000 time history analysis.

  • PDF

PREFLEX BEAM 제작시의 용접부 역학적 특성에 관한 연구 (The Study on the Analysis for Welding Residual Stress of Preflex Beam)

  • 방한서;주성민;김규훈;이창우;이형훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.323-328
    • /
    • 2002
  • Since the pre flex beam is fabricated by welding, the precompressive stresses that should occur over the concrete pier are diminished by the welding residual stresses. Therefore the welding residual stresses must be relieved during the fabrication. So the analysis and examination of the accurate welding residual stress distribution characteristic are necessary. On this study, accurate distribution of welding residual stress of preflex beam is analyzed by finite element method.

  • PDF

교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구 (A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge)

  • 박연수;이병근;김응록;서병철;박선준;최선민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

국도 상 도로시설물 대상 열화환경 조건 별 콘크리트 염화물 침투 특성 분석 (Analysis of Chloride Ion Penetration Properties into Concrete on Road Facilities Depending on the Deterioration Environments)

  • 민지영;이종석;이탁곤;차기혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.102-113
    • /
    • 2021
  • 「시설물의 안전 및 유지관리 실시 세부지침(성능평가편)」의 내구성능 평가에서 열화환경 평가항목으로 제시된 제설제 및 비래염분에 의한 염해환경, 동해환경이 국내 국도 상 콘크리트 도로시설물의 염화물 침투특성에 미치는 영향을 살펴보았다. 강원 고성, 서울, 경기 고양, 부산에 위치한 교량 총 4개소, 강원권 방호울타리 4개소, 부산권 방호울타리 3개소 및 옹벽 1개소를 대상 시설물로 선정하였으며, 제설제에 의한 직접·간접적인 염해환경, 해안거리 및 교각 높이별 비래염분에 의한 염해환경에서 염화물 침투특성을 분석하였다. 분석 결과, (1) 제설제 살포일수(강설일수)에 따른 지역별 특성이 명확하게 구분되었고, (2) 바닥판 관통 누수 혹은 신축이음부를 통한 누수 등이 발생한 경우 침투 염화물량이 유의미한 수준까지 증가하였으며, (3) 부산 해안가에 위치한 교량의 경우 높이 20m까지 비래염분의 영향권에 해당함을 확인하였다. 이로부터, 동일한 시설물이라도 노출된 열화환경, 부재의 위치 및 높이, 열화진전상태에 따라 염화물 침투특성이 달라지기 때문에 시설물 점검 시 점검대상 부재 및 위치의 선정이 매우 중요함을 확인하였으며, 국내 지역별 및 부재별 열화환경에서의 염화물 침투특성에 관한 데이터베이스를 구축한다면 콘크리트 시설물에 대한 선제적인 내구성능 관리가 가능할 것으로 기대된다.

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.