• Title/Summary/Keyword: concrete panel

Search Result 543, Processing Time 0.023 seconds

Development of Prefabricated Slab Panel for Asphalt Concrete Track (아스팔트 콘크리트 궤도용 사전제작형 슬래브 패널 개발)

  • Baek, In-Hyuk;Lee, Seong-Hyeok;Shin, Eung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • Slab panels are very important to develop asphalt concrete (AC) track for minimizing the roadbed stress due to the train load and reducing the plastic deformation of infrared-sensitive AC. In this study, the slab panel for AC track was developed through the shape design and the indoor performance test and its structural integrity has been investigated through the finite element analysis under the flexural tensile stress and the design moment according to various static load combination by KRL-2012 standard train load model and KR-C code. In order to verify the suitability of the slab panel for AC track, static bending strength test and dynamic bending strength test were performed according to EN 13230-2. Results show that the slab panel for AC track satisfies all the performance standards required by European standards such as crack loads and crack extension.

Requirement Analysis Study for Development of 3D Printing Concrete Nozzle for FCP Manufacturing (FCP 제작용 3D 프린팅 콘크리트 노즐 개발을 위한 요구사항 분석연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.65-66
    • /
    • 2022
  • In the construction industry, interest in technologies such as 3D Construction Printing (3DCP) is increasing, and research is being conducted continuously. In the case of atypical architecture, different shapes must be implemented, and the introduction of 3D printing technology is intended to solve it. Our researchers are conducting research to produce Free-form Concrete Panel (FCP). It automatically manufactures the FCP's formwork without any error with the design shape. At this time, the concrete nozzle based on the 3D printing technology is developed and the concrete is precisely extruded into the manufactured form to prevent the deformation of the formwork that can occur due to the concrete load. Therefore, in this study, the requirements for the development of 3D printing concrete nozzles for FCP manufacturing are analyzed. Based on the analyzed requirements, the first nozzle was developed. Such equipment is easy to shorten construction period and cost reduction in the atypical construction field, and is expected to be utilized as basic 3D printing equipment.

  • PDF

Experimental Study on Magnetic Compaction for Reducing Bughole of Free-Form Concrete Panels (비정형 콘크리트 패널 표면 공극저감을 위한 자력 다짐 실험연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.25-26
    • /
    • 2023
  • Free-form buildings serve as landmarks, and interest and demand are increasing. However, in the case of free-form concrete members, different curved surfaces are required depending on the location where they are used, and the formwork is custom-made and used. Concrete is poured into the manufactured formwork to produce FCP (Free-form Concrete Panel). However, since it is an atypical building that requires precise curvature, compaction cannot be performed after concrete is poured. This leads to the occurrence of bughole, which reduce the strength and aesthetics of concrete. Therefore, in this study, we intend to conduct basic experiments to develop a magnetic compaction device that can be used for FCP. As a result of the experiment, it was confirmed that the bug hole was improved when the magnetic compaction device was applied, and there was no significant difference in compressive strength and flexural strength. This technology can be used in the field of Free-form concrete where it is difficult to perform compaction work, and it is expected to be used as a basic research related to technology for new automatic compaction.

  • PDF

A Study On The Performance Of Composite Form Panel Method Of The Wall Type (벽체용 복합거푸집패널 공법의 성능에 관한 연구)

  • 송대철;김현산
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.761-768
    • /
    • 1997
  • Recently, on account of the lack of skilled labor and the increase of labor costs, it has been more difficult the construction environment. Now new methods were developed and used many places. This study is concerning the structural performance of Composite Form Panel Method-one of the new methods-of the wall type. It is available to make monolithic system of bearing wall and half slab. This paper presented design and product data by experiments.

  • PDF

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

Behavior of Joint Panel of Precast Prestressed Concrete Pavement System with Different Design Details

  • Ugur, Izzet;Shim, Hyun-Bo;Nam, Sang-Hyeok;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.575-576
    • /
    • 2009
  • From the extensive review of literature on existing precast prestressed concrete pavement (PPCP) systems, an innovative PPCP system has been developed. After the analysis and design, the sample system has been built and experimented under service loads and the defects of the system has been noted. Further study has been done to improve the performance of the defects. The appeared cracks around post-tensioning pockets was a crucial problem which needed to be solved in order to satisfy the service life of the system without any doubt. In this paper, different shape and arrangement of the post-tensioning pockets in the joint panel has been designed and analysed in order to find best performance for the system.

  • PDF

Temperature History of Wall Concrete with Heat Insulating Curing Method Subjected to Severly Cold Climate (혹한온도 조건에서의 양생방법 변화에 따른 벽체 콘크리트의 온도이력 특성)

  • Son, Ho-Jung;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Samg-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.51-52
    • /
    • 2011
  • This study is to propose a curing method for a concrete wall structure under severe cold climate. The curing methods of using heated cable, heated panel and insulated form were applied. Results showed that the concrete cured by the heated cable resulted in the highest temperature history and the highest strength development at 28 days. Further, it is believed that the curing methods of the heated panel and insulated form are also recommendable for the resistance of the early frost damage on the concrete in practice.

  • PDF

Blast Resistance Performance of Concrete Member with Intermediate Space by Fiber Reinforced Mortar Panel (섬유보강 모르타르 패널에 의해 중공층을 형성한 콘크리트 부재의 내폭성능 향상효과)

  • Nam, Jeong-Soo;Kim, Gyu-Yong;Miyauchi, Hiroyuki;Lim, Chang-Hyuck;Park, Jong-Ho;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.427-428
    • /
    • 2010
  • Recently, building structure damage and number of lives lost by bomb terror is increasing. Therefore, in this study, it is aimed to present basic data for blast resistance performance of concrete member with intermediate space by fiber reinforced mortar panel by explosion test.

  • PDF