• Title/Summary/Keyword: concrete modulus of elasticity

Search Result 390, Processing Time 0.027 seconds

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

Properties of Cementless Loess Mortar Using Eco-Friendly Hardening Agent (친환경 무기질 고화재를 사용한 무시멘트 황토모르타르의 특성)

  • Jung, Yong-Wook;Kim, Sung-Hyun;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.355-365
    • /
    • 2015
  • This study examined the fluidity and strength properties, water resistance, durability, and freeze-thaw of cementless loess mortar using an eco-friendly hardening agent. The experimental result indicates that 28 days compressive and flexural strength of the loess mortar was increased regardless of the weathered granite soil and loess mixture ratio as the replacement ratio of the hardening agent increases. The strengths were significantly increased until 14 days regardless of the hardening agent, while the effect on the strengths increasement was relatively low after 14 days. Thus, the strength development of loess mortar concrete was found to be faster than that of the normal concrete. In addition, when the hardening agent of 10% was used, the average flexural strength was 1.7MPa which is insufficient compared to the 28-day flexural strength of 4.5MPa for the paving concrete. However, the flexural strengths of the loess mortar concrete using the hardening agents of 20% and 30% were 4.0MPa and 5.3MPa, respectively. Thus, the hardening agent need to be at least 20% so that the loess mortar can be used for paving concrete. The experiment for water resistance shows that the repeated absorption and dry reduced mass regardless of the mixing ratio of the loess. The maximum length change also decreased with increasing the substitution rate loess mixture ratio and the hardening agent. The result of the freeze-thaw resistance test indicates that the relative dynamic modulus of elasticity at 300 cycle freeze-thaw with the hardening agents of 20% and 30% were 75% and 79%, relatively. Thus, the hardening agent of at least 20% is required to obtain the relative dynamic modulus of elasticity of 60% for the loess mortar.

Comparison of Void Content between Cyldrical Concrete Specimen and Concrete Core Specimen Using ASTM C 642 Test Procedure (ASTM C 642 시험방법을 이용한 구조체 코어공시체와 원주형 공시체의 공극률 비교 평가)

  • Son, Joeng Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.631-640
    • /
    • 2022
  • Recently, construction accidents have occurred due to illegal water addition and insufficient quality control at domestic construction sites. In this study, the void content test method proposed in ASTM C 642 was used to provide a reference guideline for evaluation on the quality control status of cast-in-place structural concrete. For this purpose, simulated structural concrete for coring purpose was prepared in addition to the concrete cylindrical specimens with the same formulation, and the changes in compressive strength, elastic modulus, and void content related to coring were evaluated. According to experimental results, the compressive strength and modulus of elasticity were reduced by coring, which was associated with the generation of microcracks during coring. With respect to void content, the difference in void content between the cylindrical specimen and the cored specimen was up to 1.69%. If this value is used as a correction factor, it is possible to estimate the real void content of the cast-in-place structural concrete. By comparing this with the void content obtained from cylindrical concrete specimens, it is possible to evaluate the quality control status and amount of illegal water addition on the structural concrete.

Numerical simulation of shaking table test on concrete gravity dam using plastic damage model

  • Phansri, B.;Charoenwongmit, S.;Warnitchai, P.;Shin, D.H.;Park, K.H.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.481-497
    • /
    • 2010
  • The shaking table tests were conducted on two small-scale models (Model 1 and Model 2) to examine the earthquake-induced damage of a concrete gravity dam, which has been planned for the construction with the recommendation of the peak ground acceleration of the maximum credible earthquake of 0.42 g. This study deals with the numerical simulation of shaking table tests for two smallscale dam models. The plastic damage constitutive model is used to simulate the crack/damage behavior of the bentonite-concrete mixture material. The numerical results of the maximum failure acceleration and the crack/damage propagation are compared with experimental results. Numerical results of Model 1 showed similar crack/damage propagation pattern with experimental results, while for Model 2 the similar pattern was obtained by considering the modulus of elasticity of the first and second natural frequencies. The crack/damage initiated at the changing point in the downstream side and then propagated toward the upstream side. Crack/damage accumulation occurred in the neck area at acceleration amplitudes of around 0.55 g~0.60 g and 0.65 g~0.675 g for Model 1 and Model 2, respectively.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

A Study on the Statistical Distribution of Ultrasonic Velocities for the Condition Evaluation of Concrete Wide Beam (콘크리트 넓은 보의 상태평가를 위한 초음파 속도의 통계학적 분포에 대한 연구)

  • Yoon, Young-Geun;Lee, In-Bok;Sa, Min-Hyung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.98-104
    • /
    • 2017
  • The ultrasonic pulse velocities of pressure, shear, and Rayleigh waves ( P-, S-, and R- waves) have been used for the condition evaluation of various concrete structures, but the statistical distribution according to the wave type has not been studied clearly in view of data reliability and validity. Therefore, this study analyzed the statistical distribution of P-, S-, R-wave velocities in concrete wide beams of $800{\times}3100mm$ (width ${\times}$ length) with a thickness of 300 mm. In addition, we investigated an experimental consistency by the Kolmogorov-Smirnov goodness-of-fit test. The experimental data showed that the R-, S- and P- wave velocities in order have better statistical stability and reliability for in situ evaluation because R- and S-waves are less sensitive to confinement and boundary conditions. Also, good correlations between wave velocities and strength and modulus of elasticity were found, which indicate them as appropriate techniques for estimating the mechanical properties.

Effect of basalt fibers on fracture energy and mechanical properties of HSC

  • Arslan, Mehmet E.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.553-566
    • /
    • 2016
  • Fracture energy is one of the key parameters reveal cracking resistance and fracture toughness of concrete. The main purpose of this study is to determine fracture behavior, mechanical properties and microstructural analysis of high strength basalt fiber reinforced concrete (HSFRC). For this purpose, three-point bending tests were performed on notched beams produced using HSFRCs with 12 mm and 24mm fiber length and 1, 2 and $3kg/m^3$ fiber content in order to determine the value of fracture energy. Fracture energies of the notched beam specimens were calculated by analyzing load versus crack mouth opining displacement curves by the help of RILEM proposal. The results show that the effects of basalt fiber content and fiber length on fracture energy are very significant. The splitting tensile and flexural strength of HSFRC increased with increasing fiber content whereas a slight drop in flexural strength was observed for the mixture with 24mm fiber length and $3kg/m^3$ fiber content. On the other hand, there was no significant effect of fiber addition on the compressive strength and modulus of elasticity of the mixtures. In addition, microstructural analysis of the three components; cement paste, aggregate and basalt fiber were performed based on the Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy examinations.

Mechanical and durability properties of marine concrete using fly ash and silpozz

  • Jena, T.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.47-68
    • /
    • 2018
  • This article reports the utilization of fly ash (FA) waste product from industry and silpozz which is an agro-waste from agriculture as an environmental friendly material in construction industry. The evaluation of strength and durability study was observed using FA and silpozz as a partial replacement of Ordinary Portland Cement (OPC). The studied parameters are compressive strength, flexural strength, split tensile strength and bond strength as well as the durability study involves the acid soluble chloride (ASC), water soluble chloride (WSC), water absorption and sorptivity. Scanning electron microscopy (SEM) and XRD of selected samples are also done. It reveals from the test results that the deterioration factor (DF) in compressive strength is 4% at 365 days. The DF of split tensile strength and flexural strength is 0.96% and 0.6% at 90 days respectively. The minimum slip is 1mm and 1.1mm after 28 days of testing bond strength for NWC and SWC sample respectively. The percentage decrease in bond strength is 10.35% for 28 days SWC samples. The pre-cast blended concrete samples performed better to chloride diffusion. Modulus of elasticity of SWC samples are also studied.The water absorption and sorptivity tests are conducted after 28 days of curing.

Engineering Properties of High Strength Concrete Using Lime Stone Recycling Fine Aggregate (석회암 순환잔골재를 사용한 고강도 콘크리트의 공학적 특성)

  • Han, Cheon-Goo;Kim, Hyun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • This study investigates the engineering properties of concrete incorporating lime stone crushed fine aggregate(Ls), which has been abandoned about 20% of total production due to the low purity. Test results showed that increase of Ls had favorable fluidity and slightly decreased air content. Bleeding capacity of all specimens was not appeared as those were high strength mixture proportion, but the specimens using more Ls accelerated initial and final setting. For the mechanical properties, specimens incorporating higher ratio of Ls, overall, resulted in increase of compressive strength, and exhibited very small inclined tendency in a dynamic elasticity modulus test In addition, for the durability properties, specimens incorporating higher Ls dramatically decreased a drying shrinkage and showed similar tendency in a frost & thaw test, as well as showing no more change in an accelerated neutralization test from the beginning. In conclusion, as it was confirmed in the experimental test, the high strength concrete applying Ls did not showed any problems in the aspects of engineering properties and mostly exhibited even more excellent quality than the specimens using natural fine aggregate.

  • PDF

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.