• Title/Summary/Keyword: concrete modulus of elasticity

Search Result 391, Processing Time 0.019 seconds

An Experimental Research on the Material Properties of Super Flowing Concrete (초유동 콘크리트의 재료특성에 관한 실험적 연구)

  • 김진근;한상훈;박연동;노재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.56-62
    • /
    • 1995
  • In this study, the properties of super flowing cocrete containing gly ash were experimentally investigated and compared with those of ordinary concrete. Tests were carried out on five types of super flowing concrete mixes containing fly ash and three types of ordinary concrete mixes without fly ash. Flow test, O-funnel test, box test, Ltype thest and slump test were carried out to obtain the properties for the workability of fresh concrete. Compressime strength, splitting tensile strength, modulus of elasticity. creep and shrinkage test were also obtained as the mechanical properties of hardened concrete. In fresh concrete, it was found that super flowing concrete had excellent workability and flowability compared with ordinary concrete, and the volume ratio of coarse aggregate to concrete volume greatly influenced flowability. Super flowing concrete also had good mechanical properties at both early and late ages with compressive strengths reaching as high as 40 MPa at 28 days. The creep deformation of super flowing concrete investigated were relatively lower than that of ordinary concrete.

  • PDF

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성)

  • Kim, Sung-Bae;Kim, Hyun-Young;Yi, Na-Hyun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

THE QUALITY PROPERTIES FOR FLY ASH OF COMBINED HEAT POWER PLAINT AND MECHANANICAL PROPERTIES IN CONCRETE (열병합발전소 플라이애쉬 품질 및 콘크리트의 역학적 특성)

  • Lee, Sang-Soo;Back, Myung-Jong;Won, Cheol;Ahn, Jae-Hyen;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.69-74
    • /
    • 1995
  • The primary purpose of this study is to investigate reusal techniques of fly ash of combined heat power plant in the construction field, which may contribute to the saving of construction materials and conservating environment. Firstly chemical and physical characteristics of fly ash is analysed. And then, the usability of the concrete is tested by investigating the flowablility and stength development through parameters of various replacement ratios with respect to different mixing conditions. Finally, the durability and mechanical properties(elastic modulus) of the concrete is tested. As the result of the study, the following conclusions are derived : (1) the quantity of the CaO in the fly ash is relatively high based on the chemical analysis, (2)the compressive strength ratio of the mortar is satisfied with the specification, but the unit water ratio increased, (3)high strength concrete of more than 400kg/$\textrm{cm}^2$ can be developed in the ranges of FA 30%, W/B 40%, (5)the slump loss with the elapsed time due to the delivery is decreased as the replacement ratio of the fly ash is increased, (6)the modulus of the elasticity is matched withn the specification of the Architectural Institute of Korea.

  • PDF

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.

An Experimental Study on the Influence of Bonding Material Content Affecting on the Engineering Properties of High Strength Flowing Concrete (Part II) properties of hardened concrete (고강도유동화 콘크리트의 공학적특성에 미치는 단위결합재량의 영향에 관한 실험적 연구 (제 2보 경화콘크리트의 공학적 특성))

  • 김진만;이상수;최진성;박정일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.35-38
    • /
    • 1993
  • Although bonding material content of the high strength flowing concrete is very important in engineering properties, in rich mix concrete increasing the bonding material content may not follow more good properties. This study is to investigate the influence of the bonding material content affecting on the engineering properties of high strength flowing concrete, and this paper is to analyze the properties of hardened concrete. The results reveal that the strength of concrete having loss bonding material content is higher than that of concrete having more bonding material content, and that in proportion to increasing of concrete strength brittleness factors decrease, and that the static modulus of elasticity in this study is less than that in specification.

  • PDF

An Experimental Study on the Basic Properties and the Control Properties of Crack for Face Slab Concrete in CFRD (CFRD 표면 차수벽 콘크리트의 기본 물성 및 균열 제어 특성에 관한 실험 연구)

  • 우상균;송영철;원종필;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.681-686
    • /
    • 2001
  • The purpose of this study is to provide the optimum mix design of concrete to be placed at the face slab concrete in CFRD(Concrete Faced Rockfill Dam) for pumped storage power plants. The basic performance tests including compressive strength, modulus of elasticity, flexural strength and the control properties of crack including plastic shrinkage, drying shrinkage were conducted for concrete using fly ash and polypropylene fiber. From this study, the fly ash concrete represented the better results in the aspects of basic performance, control properties of crack and economy than ordinary portland cement concrete. Especially the concrete mix design containing 20% of fly ash is recommended to be applied in the construction of the face slab concrete in CFRD for pumped storage power plants.

  • PDF

Statistical Characteristic of Mechanical Properties of Concrete (콘크리트 역학적 성질의 통계적 특성)

  • Kim, Jee-Sang;Shin, Jeong-Ho;Choi, Yeon-Wang;Moon, Jea-Heum;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.657-660
    • /
    • 2008
  • The mechanical properties of concrete such as compressive strength, tensile strength, and modulus of elasticity, are considerably influenced by various factors including locality. The material property prescriptions in national concrete design codes should reflect them. In Korea, they have not been studied systematically yet. A new performance-based design code is being prepared in Korea as a government-supported project and it has a plan to make new material prescriptions adopting domestic research results. As a starting point for the research on material properties, the statistical characteristics of mechanical properties of concrete are studied. In this paper, a probabilistic model of compressive strength, relationship between compressive strength and splitting tensile strength and compressive strength and elastic modulus are proposed based on experimental data.

  • PDF

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads

  • Zhao, Li;Gan, Wei Z.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.27-40
    • /
    • 2015
  • The rational analytical solutions are presented for functionally graded beams subjected to arbitrary tractions on the upper and lower surfaces. The Young's modulus is assumed to vary exponentially along the thickness direction while the Poisson's ratio keeps unaltered. Within the framework of symplectic elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local behavior. The complete elasticity solutions presented here include homogeneous solutions and particular solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered and compared with established results, illustrating the effects of material inhomogeneity on the localized stress distributions.

A Fundamental Study on the Workability Improvement and Strength Properties of Superplasticized Concrete(II) (Part 2, In the Case of Strength Properties of Hardened Concrete) (유동화 콘크리트의 시공성 향상 및 강도특성에 관한 기초적 연구(II) (제2보, 경화콘크리트의 강도 특성을 중심으로))

  • 김무한;권영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.21-24
    • /
    • 1989
  • The effect of superplasticizing agents on the mechanical properties in hardened concrete have been analyzed and investigated under various mix proportions of water cement ratio of 0.40, 0.50, 0.60 and 0.70, Superplasticizing agents of NL-4000, and Rheobuild-716, and addition rate of sp. agents of 0.0, 0.5, 1.0, 1.5 and 2.0 in the practical range. It is the aim of this study to provide the fundamental data on the compressive strength, dynamic and static modulus of elasticity, stress and strain curve of hardened concrete comparing with base concrete and conventional concrete for the practical use and research data accumulation of superplasticized concrete in the side of development of concrete construction technology and management.

  • PDF