• Title/Summary/Keyword: concrete modelling

Search Result 343, Processing Time 0.026 seconds

Nonlinear finite element modelling of centric dowel connections in precast buildings

  • Zoubek, Blaz;Fahjan, Yasin;Fischinger, Matej;Isakovic, Tatjana
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.463-477
    • /
    • 2014
  • The modelling approach in the case of connections in precast buildings is specific. The assembly of the constitutive parts of the connection requires the inclusion of contact definitions in the model. In addition, the material non-linearity including the influence of the spatial stress distribution should be taken into account where appropriate. Here a complex model of a beam-to-column dowel connection is presented. Experiments on the analysed connection were performed within the framework of the European project SAFECAST (Performance of Innovative Mechanical Connections in Precast Building Structures under Seismic Conditions). Several material and interaction parameters were investigated and the influence of each of them was evaluated. The set of parameters which gave the best match with the experiments was chosen.

A novel meso-mechanical model for concrete fracture

  • Ince, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.91-112
    • /
    • 2004
  • Concrete is a composite material and at meso-level, may be assumed to be composed of three phases: aggregate, mortar-matrix and aggregate-matrix interface. It is postulated herein that although non-linear material parameters are generally used to model this composite structure by finite element method, linear elastic fracture mechanics principles can be used for modelling at the meso level, if the properties of all three phases are known. For this reason, a novel meso-mechanical approach for concrete fracture which uses the composite material model with distributed-phase for elastic properties of phases and considers the size effect according to linear elastic fracture mechanics for strength properties of phases is presented in this paper. Consequently, the developed model needs two parameters such as compressive strength and maximum grain size of concrete. The model is applied to three most popular fracture mechanics approaches for concrete namely the two-parameter model, the effective crack model and the size effect model. It is concluded that the developed model well agrees with considered approaches.

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.

Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements

  • Mourad, Khebizi;mohamed, Guenfoud
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.547-562
    • /
    • 2015
  • A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking filled. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.

Finite element model for the long-term behaviour of composite steel-concrete push tests

  • Mirza, O.;Uy, B.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.45-67
    • /
    • 2010
  • Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading

  • Bahrami, Alireza;Badaruzzaman, Wan Hamidon Wan;Osman, Siti Aminah
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.403-426
    • /
    • 2012
  • This paper deals with the structural behaviour of tapered concrete-filled steel composite (TCFSC) columns under eccentric loading. Finite element software LUSAS is used to perform the nonlinear analyses to predict the structural behaviour of the columns. Results from the finite element modelling and existing experimental test are compared to verify the accuracy of the modelling. It is demonstrated that they correlate reasonably well with each other; therefore, the proposed finite element modelling is absolutely accurate to predict the structural behaviour of the columns. Nonlinear analyses are carried out to investigate the behaviour of the columns where the main parameters are: (1) tapered angle (from $0^{\circ}$ to $2.75^{\circ}$); (2) steel wall thickness (from 3 mm to 4 mm); (3) load eccentricity (15 mm and 30 mm); (4) L/H ratio (from 10.67 to 17.33); (5) concrete compressive strength (from 30 MPa to 60 MPa); (6) steel yield stress (from 250 MPa to 495 MPa). Results are depicted in the form of load versus mid-height deflection plots. Effects of various tapered angles, steel wall thicknesses, and L/H ratios on the ultimate load capacity, ductility and stiffness of the columns are studied. Effects of different load eccentricities, concrete compressive strengths and steel yield stresses on the ultimate load capacity of the columns are also examined. It is concluded from the study that the parameters considerably influence the structural behaviour of the columns.

Ultimate Load Analysis of Reinforced Concrete Shear Walls (측면하중을 받는 전단벽 구조물의 극한 거동해석)

  • Lee, Myung-Kue;Chung, Yun-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.478-481
    • /
    • 2006
  • Reinforced concrete shear wall is composed of wall, horizontal and vertical flanges. Due to the abrupt change in its geometry, it is difficult to predict the ultimate behaviour of shear wall in the action of lateral forces. For the better understanding of ultimate state, the propagation of crack and inelastic compressive zone are simulated reasonably. In this study, for the improvement of analysis result for shear wall with flanges, analyses are fulfilled with the application of some modelling methods including various material and geometrical models and numerical methods. The results from various modelling methods are compared and the advisable model is proposed.

  • PDF

Comparison among different software for the evaluation of moment-curvature of R.C. columns

  • Montuori, Rosario;Nastri, Elide;Palese, Maria Ilenia;Piluso, Vincenzo
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.259-269
    • /
    • 2019
  • The work aims at the comparison among commonly used research programs concerning moment-curvature ($M-{\chi}$) diagrams of confined R.C. members. The software considered in this work are Sap2000, SeismoStruct and Opensees. The curves provided by these software, given the same modelling, have been compared to those provided by a theoretical fiber model. A parametric analysis has been led on rectangular column sections with different level of axial load and different stirrups spacing. The accuracy of the modelling of the considered structural programs has been investigated by comparing their results with those obtained by applying the theoretical fiber model.

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.