• Title/Summary/Keyword: concrete mixture design

Search Result 168, Processing Time 0.025 seconds

Design of Fiber Reinforced Cement Matrix Composite Produced with Limestone Powder and Flexural Performance of Structural Members (석회석 미분말을 혼입한 시멘트계 매트릭스 섬유복합재료의 설계 및 구조부재의 휨성능)

  • Hyun, Jung-Hwan;Kim, Yun-Yong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.328-335
    • /
    • 2016
  • The purpose of this study is to develop fiber reinforced cement matrix composite (ECC) produced with limestone powder in order to achieve high ductility of the composite, and to evaluate flexural performance of structural members made with ECC. Four kinds of mixture proportions were determined on the basis of the micromechanics and a steady state cracking theory considering the matrix fracture toughness and fiber-matrix interfacial characteristics. The mechanical properties of ECC, represented by strain-hardening behavior in uniaxial tension, were investigated. Also, strength property of the composite was experimentally evaluated. Two structural members made with ECC were produced and tested. Test results were compared with those of conventional concrete structural members. Increased limestone powder contents of ECC provides higher ductility of the composites while generally resulting in a lower strength property. ECC structural members exhibited higher flexural ductility, higher flexural load-carrying capacity and tighter crack width compared to conventional structural members.

Determination of homogeneity index of cementitious composites produced with eps beads by image processing techniques

  • Comak, Bekir;Aykanat, Batuhan;Bideci, Ozlem Salli;Bideci, Alper
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.107-115
    • /
    • 2022
  • With the improvements in computer technologies, utilization of image processing techniques has increased in many areas (such as medicine, defence industry, other industries etc.) Many different image processing techniques are used for surface analysis, detection of manufacturing defects, and determination of physical and mechanical characteristics of composite materials. In this study, cementitious composites were obtained by addition of Grounded Granulated Blast-Furnace Slag (GGBFS), Styrene Butadiene polymer (SBR), and Grounded Granulated Blast-Furnace Slag and Styrene Butadiene polymer together (GGBFS+SBR). Expanded Polystyrene (EPS) beads were added to these cementitious composites in different ratios (20%, 40% and 60%). The mechanical and physical characteristics of the composites were determined, and homogeneity indexes of the composites were determined by image processing techniques to determine EPS distribution forms in them. Physical and mechanical characteristics of the produced samples were obtained by applying consistency, density, water absorption, compressive strength (7 and 28 days), flexural strength (7 and 28 days) and tensile splitting strength (7 and 28 days) tests on them. Also, visual examination by using digital microscope, and image analysis by using image processing techniques with open source coded ImageJ program were performed. As a result of the study, it is determined that GGBFS and SBR addition strengthens the adhesion sites formed as it increases the adhesion power of the mixture and helps to get rid of the segregation problem caused by EPS. As a result of the image processing analysis it is demonstrated that GGBFS and SBR addition has positive contribution on homogeneity index.

Behavior of High-elastic Stress Absorbing Interlayer for Reflective Cracking Resistance (고탄성 응력흡수층의 반사균열 저항특성 연구)

  • Park, Tae Soon;Lee, Yo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.445-451
    • /
    • 2006
  • This study was conducted to develop the interlayer mixture that absorbs the stress between the old concrete pavement and the asphalt overlay pavement layer. The elasticity, the flexibility, the consistency and the impermeability is required for high-elastic Stress Absorbing Interlayer(HSAI) to absorb and disperse the stress that causes the flexural and horizontal movements of the joint and the crack. The HSAI developed from foreign product was satisfied with the design criteria. The specimens using the HSAI showed the significant reduction of the reflective crack compared those not using the HSAI. The significance included that the life of shear failure and horizontal displacement resistance increased 4 times. The life of the share failure increased to 5 times and the horizontal displacement increased to 9 times according to the selection of surface course material which showed the excellence of the HSAI.

A Fundamental Approach for Developing Deformation Strength Based on Rutting Characteristics of Asphalt Concrete (소성변형과의 상관성에 근거한 아스팔트 콘크리트의 변형강도 개발을 위한 기초연구)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Jun-Eun;Choi, Sun-Ju
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.23-39
    • /
    • 2002
  • This study dealt with developing a new approach for finding properties which might represent rut resistance characteristics of asphalt mixture under static loading. Two aggregates, a normal asphalt (pen 60-80) and 5 polymer-modified asphalts were used in preparation of 12 dense-graded mixtures. Marshall mix design was used in determination of OAC and each mixture at the OAC was prepared for a newly-developed Kim test on Marshall specimen (S=10cm) and gyratory specimen (S=15cm), and for wheel tracking test. Kim test used Marshall loading frame and specimens were conditioned for 30min at $60^{\circ}C$ before loading through Kim tester an apparatus consisting of a loading column and a specimen and column holder Diameter (D) of column was 3cm and 4cm with each column having different radius (r) of round cut at the bottom. The static load was applied at 50mm/min in axial direction of the specimen, not in diametral direction. The maximum load ($P_{max}$) and vertical deformation (y) at $P_{max}$ point were obtained from the test. A strength value was calculated based on the $P_{max}$ r, D and y by using the equation $K_D = 4P_{max}/{\pi}(D-2(r-\sqrt{2ry-y^2}))^2$ and is defined as the deformation strength ($kgf/cm^2$). The values of $P_{max}$/y and $K_I=K_D/y$ were also calculated. In general the leading column diameter and radius of round cut were significant factors affecting $K_D$ and $P_{max}$ values while specimen diameter was not. The statistical analyses showed the $K_D$ had the best correlation with rut depth and dynamic stability. The next best correlation was found from $P_{max}$ which was followed by $P_{max}$/y and $K_I$ in order.

  • PDF

Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design (고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성)

  • Jeong, Yeon-Ung;Oh, Sung-Woo;Cho, Young-Keun;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.585-593
    • /
    • 2021
  • This study investigates the compressive strength of high-strength cement composites with 64 mixture designs and 2 curing conditions. The cement composites were designed with varying water-to-binder ratios, silica fume content to cement, and binder content per unit volume of cement composite to explore compressive strength development depending on its mix design. An increase in the water-to-binder ratio decreased the compressive strength of the composites, having consistency with the trend in normal concrete. The compressive strength increased with ages at an ambient curing temperature, but it was not identified at high-temperature curing. The compressive strength development was negligible in case that silica fume content to OPC is 15%~25%, but a decrease in the con ten t below 15% reduced compressive stren gth. It was more obvious in the specimen of low water-to-binder ratio. The specimen with 840kg/m3 of binder content per unit volume had the highest compressive strength in this study, and the decrease in binder content reduced the compressive strength of high strength cement composites in low silica fume content.

Relationship between Compressive Strength and Dynamic Modulus of Elasticity in the Cement Based Solid Product for Consolidating Disposal of Medium-Low Level Radioactive Waste (중·저준위 방사성 폐기물 처리용 시멘트 고화체의 압축강도와 동탄성계수의 관계)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Ji-Ho;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Recently, the medium-low level radioactive waste from nuclear power plant must be transported from temporary storage to the final repository. Medium-low level radioactive waste, which is composed mainly of the liquid ion exchange resin, has been consolidated with cementitious material in the plastic or iron container. Since cementitious material is brittle, it would generate cracks by impact load during transportation, signifying leakage of radioactive ray. In order to design the safety transporting equipment, there is a need to check the compressive strength of the current waste. However, because it is impossible to measure strength by direct method due to leakage of radioactive ray, we will estimate the strength indirectly by the dynamic modulus of elasticity. Therefore, it must be identified the relationship between of strength and dynamic modulus of elasticity. According to the waste acceptance criteria, the compressive strength of cement based solid is defined as more than 3.44 MPa (500 psi). Compressive strength of the present solid is likely to be significantly higher than this baseline because of continuous hydration of cement during long period. On this background, we have tried to produce the specimens of the 28 day's compressive strength of 3 to 30 MPa having the same material composition as the solid product for the medium-low level radioactive waste, and analyze the relationship between the strength and the dynamic modulus of elasticity. By controling the addition rates of AE agent, we made the mixture containing the ion exchange resin and showing the target compressive strength (3~30 MPa). The dynamic modulus of elasticity of this mixtures is 4.1~10.2 GPa, about 20 GPa lower in the equivalent compressive strength level than that of ordinary concrete, and increasing the discrepancy according to increase strength. The compressive strength and the dynamic modulus of elasticity show the liner relationship.

Corium melt researches at VESTA test facility

  • Kim, Hwan Yeol;An, Sang Mo;Jung, Jaehoon;Ha, Kwang Soon;Song, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1547-1554
    • /
    • 2017
  • VESTA (Verification of Ex-vessel corium STAbilization) and VESTA-S (-small) test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging $ZrO_2$ melt jet on a sacrificial material were performed to investigate the ablation characteristics. $ZrO_2$ melt in an amount of 65-70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40), and the other is a stainless steel (SUS304) melt. Metallic melt in an amount of 1.5-2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. $ZrO_2$ melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is $UO_2$ 60%, Zr 10%, $ZrO_2$ 15%, SUS304 14%, and $B_4C$ 1%, was melted in a cold crucible using an induction heating technique.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.