• Title/Summary/Keyword: concrete mixture design

Search Result 168, Processing Time 0.034 seconds

Application of Satisfaction Curve to Concrete Material

  • Kim, Jang-Ho-Jay;Phan, Hung-Duc;Jeong, Ha-Sun;Kim, Byung-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.821-824
    • /
    • 2008
  • This paper presents a systematic approach for estimating material performance of concrete mixture design based on satisfaction curves developed from statistical evaluation of existing or newly obtained material property related data. In performance based material design (PBMD) method, concrete material used for construction of a structure is designed considering a structure's specified performance requirements based on its usage and characteristics such as environmental conditions, structure types, expected design life, etc.Satisfaction curves express the probabilities that one component of substrates (i.e., aggregate size, cement content, etc) of concrete mixture will sustain different criterion value for a given concrete mixture design. This study presents a statistical analysis method for setting up concrete material parameter versus concrete criterion relationships in the form of satisfaction curves and for estimating confidence bounds on these satisfaction curves. This paper also presents an analysis method to combine multiple satisfaction curves to form one unique satisfaction curve that can relate the performance of concrete to a single evaluating value. Based on several evaluated mixture design examples for various material properties, the validity of the proposed method is discussed in detail.

  • PDF

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

The Study of Asphalt Concrete Mixture Design Using Maximum Density Theory (최대밀도이론을 이용한 아스팔트 혼합물의 배합설계에 관한 연구)

  • Lee, Seung-Han;Park, Hyun-Myo;Jung, Yong-Wook;Jang, Seck-Soo;Kim, Jang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.525-528
    • /
    • 2005
  • This study determines the best composite grade to minimize the void of aggregate mixture based on the maximum density theory in an attempt to suggest a mix proportion method design for asphalt mixtures. Study results show that the grading curve with the maximum mass per unit capacity of each aggregate mixture satisfied the KS standards and the optimum AP content to meet the optimal asphalt mixture void rate of 4$\%$ was 5.7$\%$, less than the optimum AP content of 6.5$\%$ suggested in the Marshal mix proportion method design. At the same time, the asphalt mixture produced based upon the suggested mix proportion method had a flow value 17$\%$ lower than that of asphalt mixture produced according to the Marshal method, while its density was greater by 0.06$\~$0.09. This suggests that the introduced mix proportion method design helps to improve the shape flexibility and crack-resistance of asphalt concrete.

  • PDF

An approach of using ideal grading curve and coating paste thickness to evaluate the performances of concrete-(1) Theory and formulation

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.19-33
    • /
    • 2012
  • The performance of a concrete is significantly influenced by its mixture proportion and the coating thickness on aggregate surface. The concrete in this study is designed by estimating the blending ratio of aggregate using a densified mixture design algorithm (DMDA) based on an ideal grading curve and estimating the paste volume as the sum of the amount of paste needed to provide an assigned coating paste thickness. So as to obtain appropriate concrete amount, and thus can accurately estimate the property of concrete. Deduction of this mix design formula is simple and easy understanding, and meanwhile to obtain result is fast. This estimation model of mix design is expected to reward to industry and effectively upgrade concrete quality.

Application of Performance Based Mixture Design (PBMD) for High Strength Concrete (고강도 콘크리트의 성능기반형 배합설계방법)

  • Kim, Jang-Ho Jay;Oh, Il Sun;Phan, Duc Hung;Lee, Keun Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.561-572
    • /
    • 2010
  • This paper is a study about application of recently proposed Performance Based Mixture Design (PBMD) for design of high strength concrete (HSC) to obtain HSC mix proportion that satisfies required performances. The PBMD method which uses Satisfaction curve based on a Bayesian method is a performance oriented concrete mix proportion design procedure easily applicable to any condition and environment for a possible replacement to the current prescriptive design standards. Based on extensive experimental results obtained for various materials and performance parameters of HSC, the application feasibility of the developed PBMD procedure for HSC has been verified. Also, the proposed PBMD procedure has been used to perform application examples to obtain desired target performances of HSC with optimum concrete mixture proportions using locally available materials, local environmental conditions, and available concrete production technologies. The validity and precision of HSC mix proportion design obtained using the PBMD method is verified with the experimental and ACI presented results to check the feasibility for actual design usage.

Mix Design for Waste PE Films Modified Asphalt Concrete (농업용 폐비닐로 개질한 아스팔트 콘크리트의 배합설계)

  • 김광우;이상범;오성균;고동혁;정승호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.313-318
    • /
    • 1999
  • This study is basic research to improve quality of asphalt concrete mixture, to preserve environment, and to recycle waste vinly. The mixing method and proper content of waste vinyl were determined through preliminary mix design. This study performed mix designs using 2 type gradations of aggregate in addtion content of wate vinly. Marshall stability at optimum asphalt content of asphalt concrete mixture addtin wate vinly was satisfied with the specification of the Ministry of Construction and Transportation , and its values indicated that dense grade asphalt concrete mixture containing waste vinyl were higher than common dense grade mixture (control). From this study, it was confirmed that addtion of waste vinyl improved quality of asphalt concrete mixture.

  • PDF

Compressive strength and mixture proportions of self-compacting light weight concrete

  • Vakhshouri, Behnam;Nejadi, Shami
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.555-566
    • /
    • 2017
  • Recently some efforts have been performed to combine the advantages of light-weight and self-compacting concrete in one package called Light-Weight Self-Compacting Concrete (LWSCC). Accurate prediction of hardened properties from fresh state characteristics is vital in design of concrete structures. Considering the lack of references in mixture design of LWSCC, investigating the proper mixture components and their effects on mechanical properties of LWSCC can lead to a reliable basis for its application in construction industry. This study utilizes wide range of existing data of LWSCC mixtures to study the individual and combined effects of the components on the compressive strength. From sensitivity of compressive strength to the proportions and interaction of the components, two equations are proposed to estimate the LWSCC compressive strength. Predicted values of the equations are in good agreement with the experimental data. Application of lightweight aggregate to reduce the density of LWSCC may bring some mixing problems like segregation. Reaching a higher strength by lowered density is a challenging problem that is investigated as well. The results show that, the compressive strength can be improved by increasing the of mixture density of LWSCC, especially in the range of density under $2000Kg/m^3$.

Development of the Proportion Design Program for 40$\sim$60MPa High Strength Concrete (40$\sim$60MPa급 고강도 콘크리트 배합설계 프로그램 개발)

  • Yoo, Seung-Yeup;Choi, Dong-Ho;Lee, Sang-Rae;Koo, Ja-Sul;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.401-404
    • /
    • 2008
  • This study exploited the design of mixture proportion for the high strength concrete to establish the method of the quality control and high strength ready-mixed concrete for the application to the construction filed systematically how to output the estimated formula which could forecast mixture proportion for the high strength concrete classed 40${\sim}$60MPa through a experiment. It might contribute for systematic establishment of the method of the quality control and high strength ready-mixed concrete because it was possessed of the function of common data though a server, preservation and output of data, and estimation for the design of mixture proportion for the high strength concrete due to the experimental result, and Visual Basic, MS-SQL were used. Simply, it was produced corresponding to the condition of a laboratory, so it could be fundamental data for the design of mixture proportion for the high strength concrete. If upgrade is enforced with mixture proportion data of the each factory after then, it may contribute to the stability on quality and manufacture of high strength ready-mixed concrete to agree with the properties of each factory.

  • PDF

Study on durability of densified high-performance lightweight aggregate concrete

  • Wang, H.Y.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.499-510
    • /
    • 2007
  • The densified mixture design algorithm (DMDA) was employed to manufacture high-performance lightweight concrete (LWAC) using silt dredged from reservoirs in southern Taiwan. Dredged silt undergoing hydration and high-temperature sintering was made into a lightweight aggregate for concrete mixing. The workability and durability of the resulting concrete were examined. The LWAC made from dredged silt had high flowability, which implies good workability. Additionally, the LWAC also had good compressive strength and anti-corrosion properties, high surface electrical resistivity and ultrasonic pulse velocity as well as low chloride penetration, all of which are indicators of good durability.

A Study on the Minimum Paste Volume in the Design of Concrete Mixture

  • Fowler, David W.;Hahn, Michael De Moya;Rached, Marc;Choi, Doo-Sun;Choi, Jae-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Optimization of concrete mixing system is very important for the production of quality mixture of concrete and requires very complicated, specialized knowledge as there are a variety of variables that influence the result. One of the methods of optimizing the concrete mixing system is to minimize the volume of cement paste which, in turn, means maximizing the volume of aggregate. The purpose of this study is to determine the minimum volume of cement paste used in the design of concrete mixture and to design the optimum concrete mixing system based on the fluidity of mortar and concrete. In determining the minimum volume of cement paste, experiments of mortar and concrete were performed based on their workability, material segregation and bleeding. Type of aggregate, granularity distribution and sand percentage were used as test parameters and measurements were taken of the distribution of granularity, usage of HRWRA, minimum volume of paste and drying shrinkage and compressive strength of concrete.