• 제목/요약/키워드: concrete mix proportion design

검색결과 90건 처리시간 0.02초

Developing Design Process of 3D Printing Concrete Mix Proportion (3D 프린팅 콘크리트 배합설계 프로세스에 관한 연구)

  • Chen, Chao;Park, Yoo-Na;Yoo, Seung-Kyu;Bae, Sung-Chu;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • 제7권3호
    • /
    • pp.1-10
    • /
    • 2017
  • 3D concrete printing technology builds structural components layer-by-layer with concrete extruded through a nozzle without using forms. This technology can simplify construction processes by optimizing design flexibility, construction time, and cost. Furthermore, the 3D printing technology is easy to make an irregularly shaped and function embedded building(or object) which is difficult to be constructed by conventional construction method. However, the 3D printing concrete is not suitable for current commercial standard and the material itself. It is also difficult to apply it to the construction site due to the lack of initial strength and the nozzle which is clogged during the process. The research of mix proportion design process for 3D printing concrete which differs from the conventional concrete is necessary in order to solve the problems. This paper aims to calculate the 3D printing concrete mix proportion design process based on the mix materials and performance information derived from the previous researches. Therefore, the usage variation range, mutual influence relationship, and the importance priority of the mix proportion are analyzed. Based on this results, the basic design process of 3D printing concrete which contains planning design phase, basic design phase and validating performance phase is suggested. We anticipate to confirm applicability verification about the actual production by referring to this 3D printing concrete mix proportion study. In the future, this study can be utilized for blueprint of the 3D printing concrete mix proportion.

A Study on Design of Mix Proportion for Concrete using Recycled Aggregate (순환골재를 이용한 콘크리트의 배합설계에 관한 연구)

  • Park, Won-Jun;Noguchi, Takafumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.101-103
    • /
    • 2011
  • Various desired performances of concrete cannot be always obtained by current conventional mix proportion methods for recycled aggregate concrete (RAC). This paper suggests a new design method of mix proportion for RAC to reduce the number of trial mixes using genetic algorithm (GA) which has been an optimization technique to solve the multi-object problem. In mix design method by GA, several fitness functions for the required properties of concrete, i.e., slump, strength, price, and carbonation speed coefficient were considered based on conventional data or fitness function. As a result, various optimum mix proportions for RAC that meet required performances were obtained and the risk evaluation was also conducted for selected mixtures.

  • PDF

Genetic algorithm in mix proportion design of recycled aggregate concrete

  • Park, W.J.;Noguchi, T.;Lee, H.S.
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.183-199
    • /
    • 2013
  • To select a most desired mix proportion that meets required performances according to the quality of recycled aggregate, a large number of experimental works must be carried out. This paper proposed a new design method for the mix proportion of recycled aggregate concrete to reduce the number of trial mixes. Genetic algorithm is adapted for the method, which has been an optimization technique to solve the multi-criteria problem through the simulated biological evolutionary process. Fitness functions for the required properties of concrete such as slump, density, strength, elastic modulus, carbonation resistance, price and carbon dioxide emission were developed based on statistical analysis on conventional data or adapted from various early studies. Then these fitness functions were applied in the genetic algorithm. As a result, several optimum mix proportions for recycled aggregate concrete that meets required performances were obtained.

Strength Properties and Determination Method of Mix Proportion Factor of Latex Modified Concrete (라텍스개질 콘크리트의(LMC)의 강도특성 및 배합인자 결정방법)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제50권5호
    • /
    • pp.39-50
    • /
    • 2008
  • This study are decided the mix proportion method of latex modified concrete for agricultural concrete structures from the results of workability and strength test with mix proportion factor. For mix proportion factor, this study are selected the water-cement ratio, unit cement amount and latex content. Also, this study were performed the slump, compressive strength test and microstructure analysis using the scanning electron microscope(SEM). The strength and slump of LMC are dependent with unit cement amount, latex content, and water-cement ratio. Especially, the strength of LMC are not controlled by single mix proportion factor but effected by combined mix proportion factor. Microstructure investigation are showed the LMC are reduced the internal pore volume and enhanced the transition zone between cement paste and aggregate interface. This effect get by consist of latex films in the concrete. Also, this study were recommended the mix proportion method for LMC. These mix proportions method are estimated the mix design for satisfied the target performance which are applied the agricultural concrete structure.

An Analysis Report on the Mix Design of Ready Mixed Concrete (레디믹스드콘크리트의 조합설계안 분석보고)

  • 최민수;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.54-57
    • /
    • 1992
  • This report presents the survey findings on the proportioning of ready mixed, concrete mixtures. According to this report, the W/C ratio and S/A ratio, based upon the type 25-210-12, in mix proportion of ready mixed concrete are 53% and 45% respectively. The problems to be improved, coming out in this study, are (1)using the adequate quantity of cement (2) alternation of mix design cope with the change of kinds of aggregates (3)large standard error in the mix proportion.

  • PDF

The Study of Asphalt Concrete Mixture Design Using Maximum Density Theory (최대밀도이론을 이용한 아스팔트 혼합물의 배합설계에 관한 연구)

  • Lee, Seung-Han;Park, Hyun-Myo;Jung, Yong-Wook;Jang, Seck-Soo;Kim, Jang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.525-528
    • /
    • 2005
  • This study determines the best composite grade to minimize the void of aggregate mixture based on the maximum density theory in an attempt to suggest a mix proportion method design for asphalt mixtures. Study results show that the grading curve with the maximum mass per unit capacity of each aggregate mixture satisfied the KS standards and the optimum AP content to meet the optimal asphalt mixture void rate of 4$\%$ was 5.7$\%$, less than the optimum AP content of 6.5$\%$ suggested in the Marshal mix proportion method design. At the same time, the asphalt mixture produced based upon the suggested mix proportion method had a flow value 17$\%$ lower than that of asphalt mixture produced according to the Marshal method, while its density was greater by 0.06$\~$0.09. This suggests that the introduced mix proportion method design helps to improve the shape flexibility and crack-resistance of asphalt concrete.

  • PDF

Properties of the Combined High Flowing Concrete by Mix Design Factors (병용계 고유동 콘크리트의 배합요인에 따른 특성)

  • Kwon Yeong Ho;Lee Hyun Ho;Lee Hwa Jin;Ha Jae Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.407-410
    • /
    • 2005
  • This research investigates experimentally an effect on the properties of the combined high flowing concrete by mix design factors. The purpose of this study is to determine the optimum mix proportion of the combined high flowing concrete having good flowability, viscosity, no-segregation and design strength(40.0MPa). For this purpose, trial mixings used belite cement+lime stone powder(LSP) are tested by mix design factors including water-cement ratio($47.9\~54.0\%$), fine aggregate volume ratio($41\~45\%$) and coarse aggregate volume ratio($41\~45\%$). As test results of this study, the optimum mix proportion for the combined high flowing concrete is as followings. Water-cement ratio $51.0\%$, fine aggregate volume ratio $43{\pm}1\%$ and coarse aggregate volume ratio $0.30{\pm}0.05m^3/m^3$ and replacement ratio of LSP $42.7\%$.

  • PDF

Mix Design of High Performance Concrete (고성능콘크리트의 배합설계)

  • Jung Yong-Wook;Lee Seung-Han;Yun Yong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.73-76
    • /
    • 2005
  • This study aims to suggest a simple and convenient design for a mix proportion method for high performance concrete by determining the optimum fine aggregate ratio and minimum binder content based on the maximum density theory. The mix design method introduced in this study adopted the optimum fine aggregate ratio with a minimum void and binder content higher than the minimum binder content level. The research results reveal that the method helps to reduce trial and error in the mixing process and is a convenient way of producing high performance concrete with self filler ability. In an experiment based on the mix proportion method, when aggregate with the fine aggregation ratio of 41$\%$ was used, the minimum binder content of high performance concrete was 470kg/$m^{3}$ and maximum aggregate capacity was $0.657m^{3}/m^{3}$. In addition, in mixing high performance concrete, the optimal slump flow to meet filler ability was 65$\pm$5cm, V load flow speed ranged from 0.5 to 1.5.

  • PDF

A mortar mix proportion design algorithm based on artificial neural networks

  • Ji, Tao;Lin, Xu Jian
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.357-373
    • /
    • 2006
  • The concepts of four parameters of nominal water-cement ratio, equivalent water-cement ratio, average paste thickness, fly ash-binder ratio were introduced. It was verified that the four parameters and the mix proportion of mortar can be transformed each other. The behaviors (strength, workability, et al.) of mortar primarily determined by the mix proportion of mortar now depend on the four parameters. The prediction models of strength and workability of mortar were built based on artificial neural networks (ANNs). The calculation models of average paste thickness and equivalent water-cement ratio of mortar can be obtained by the reversal deduction of the two prediction models, respectively. A mortar mix proportion design algorithm was proposed. The proposed mortar mix proportion design algorithm is expected to reduce the number of trial and error, save cost, laborers and time.

Effect of Mix Proportion on the Flowing Characteristics of Super-flowing Concrete (초유동 콘크리트의 유동 성능에 미치는 배합요인의 영향)

  • 노재호;한정호;백명종;이보근;박기청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.115-120
    • /
    • 1994
  • Recently super-flowing concrete has been developed and used in many construction sites in Japan. It is believed that super-flowing concrete will change the construction method and contribute to the durability of concrete structures. In this study the effect of mix proportion on the flowing characteristics of super-flowing concrete was investigated to establish the mix design method. From the result we have found that self-compactability of super-flowing concrete was greatly affected by the unit gravel volume and paste/gravel volume ratio. Therefore the two parameters can be used in mix design of super flowing concrete.

  • PDF