• Title/Summary/Keyword: concrete mix

Search Result 1,199, Processing Time 0.232 seconds

Study on Mix Proportion of Self-Compacting Concrete Utilizing Melaminic Acid Based Admixture (멜라민계 혼화제를 이용한 고유동 콘크리트 배합에 관한 연구)

  • Noh Jea Myoung;Kim Soo Man;Lee Pyung Suk;Kwon Ki Joo;Nah Hwan Seon;Oh Byoung Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.208-211
    • /
    • 2004
  • In order to obtain improved concrete mix proportion on nuclear power plant structures, the properties of normal concrete is compared with self-compacting concrete. In addition, various mixes of self-compacting concrete utilizing melaminic acid based admixture is mutually compared and estimated. Because existing normal concrete mixes might occur high temperature in concrete structure, A new multi-component concrete, which declines hydration heat, is demanded. Therefore, in this study, the possibility of manufacturing self-compacting concrete is verified and what influences melaminic acid and various powders have on the properties of self-compacting concrete are investigated.

  • PDF

Analysis of data on mechanical properties and durability of recycled aggregate concrete to develope estimation program of recycled aggregate concrete strength (재생콘크리트 강도 예측 프로그램 개발을 위한 재생콘크리트의 역학적 특성과 내구성에 관한 자료 분석)

  • Choi Hee-Bok;Kang Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.15-19
    • /
    • 2004
  • The production of waste concrete is increased continuously by urban renewal, reconstruction, remodeling, and so on. So the positive use of recycled aggregate concrete is needed. Research for recycled aggregate concrete that use recycled aggregate from the mid-80s to solve environmental problem of aggregate insufficiency and waste concrete is consisting vigorously. However, specifications and mix design about waste concrete's use are evading use of recycled aggregate concrete yet in spot being not taken a triangular position. Therefore. it analyze existing research data for recycled aggregate concrete collection to develop strength estimate program in this research. Recycled aggregate concrete's strength estimate program if specifications and mix design about recycled aggregate concrete are taken a triangular position to foundation recycled aggregate concrete's practical use to increase judge.

  • PDF

Optimum Mixture Proportion of Self-Compacting Concrete Considering Packing Factor of Aggregate and Fine Aggregate Volume Ratio (골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합)

  • 최연왕;정문영;정지승;문대중;안성일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.549-554
    • /
    • 2002
  • In Powder System, SCC demands high dosage of superplasticizer and a lage amout of powder for suitable fluidity and viscosity. Okamura's method of most representative mixing design method in SCC of Powder-System is unfavorable economically because of using a large amount of powder. In addition, many ready-mixed concrete plants do not use his mix design method and procedure due to complexity for practical application. Therefore, Nan Su proposed more simple mix design method than Okamura's. It had an advantage in simplicity in practical application and required a smaller amount of powders compared with Okamura's method. This paper proposed an optimal mixture proportion of SCC with consideration of Nan Su's method. The new and modified mix design method required a smaller amount of powder than that of Nan Su's. To check the properties of SCC, considered with the requirements specified by the Japanese Society of Civil Engineering.(JSCE)

  • PDF

An Experimental Study on the Properties of Early-Strength for high performance Concrete according to Mix Design (배합설계 조건에 따른 고성능 콘크리트의 조기강도 발현특성에 관한 연구)

  • Choi, Sumg-Woo;Yoo, Jong-Su;Beak, Chul-Woo;Kim, Jeong-Sik;Ryu, Deung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.231-232
    • /
    • 2009
  • In this study, the properties of early strength development for high performance concrete according to mix design were examined In particulara, we examined the mineral addmixture influence for mix design.

  • PDF

Mechanical and Physical Performance of Ultra Rapid Hardening Roller Compacted Concrete for Pavement (조기강도 발현 롤러다짐 콘크리트의 물리.역학적 성능 평가)

  • Kim, Joon-Mo;Kang, Hee-Byung;Lee, Sang-Woo;Lee, Su-Jin;Park, Sung-Ki;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.283-284
    • /
    • 2010
  • This study was evaluated the mechanical and physical performance of ultra rapid hardening roller compacted concrete. Mix proportion were compared with mix proportion without latex about mechanical and physical performance. The test results showed that mix proportion with latex presented excellent performance due to pore filling effect of latex for unification behavior.

  • PDF

Shrinkage Properties of High Strength Concrete according to Poly mix Fiber and Moisture Evaporation Condition (수분증발조건 및 폴리믹스섬유 혼입에 따른 고강도콘크리트의 수축특성)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Nam, Jeong-Soo;Kim, Hong-Seop;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.289-290
    • /
    • 2012
  • In this study, it was evaluated about shrinkage properties of high strength concrete according to poly mix fiber and moisture evaporation condition. As a results, When concrete was mixed with poly mix fiber of spalling control, it reduced effect of shrinkage independent of the evaporation conditions of unsealed and sealed.

  • PDF

A Study On the Mix Design and Quality Control System of High Strength Concrete for the Construct ion of High Rise Complex Structure (초고층 주상복합구조물에 적용한 고강도 콘크리트의 배합설계 및 품질관리 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.40-45
    • /
    • 2001
  • The purposes of this study were mix design and quality control of high strength concrete for the construction of high rise complex structure. Desired performances of this high strength concrete were slump flow 50$\pm$10cm, air content 4.5$\pm$1.5% and design strength 400kgf/$cm^2$. Experimental flow was that optimal mix design was selected in the indoor experiment and after that, producing test was done in the batcher plant. Excel lent results of experiment was obtained from binder content 475kg/$m^2$ with replacement ratio 10% of fly ash. The results of field application of high strength concrete was sufficiently satisfied both flowability and compressive strength.

  • PDF

An Experimental Study on the Basic Properties and the Control Properties of Crack for Face Slab Concrete in CFRD (CFRD 표면 차수벽 콘크리트의 기본 물성 및 균열 제어 특성에 관한 실험 연구)

  • 우상균;송영철;원종필;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.681-686
    • /
    • 2001
  • The purpose of this study is to provide the optimum mix design of concrete to be placed at the face slab concrete in CFRD(Concrete Faced Rockfill Dam) for pumped storage power plants. The basic performance tests including compressive strength, modulus of elasticity, flexural strength and the control properties of crack including plastic shrinkage, drying shrinkage were conducted for concrete using fly ash and polypropylene fiber. From this study, the fly ash concrete represented the better results in the aspects of basic performance, control properties of crack and economy than ordinary portland cement concrete. Especially the concrete mix design containing 20% of fly ash is recommended to be applied in the construction of the face slab concrete in CFRD for pumped storage power plants.

  • PDF

Tensile Properties of GFRP Rebars Based on Resin Mix Proportions (수지배합에 따른 GFRP 보강근의 인장 특성)

  • Park, Ji-Sun;You, Young-Chan;Park, Young-Hwan;You, Young-Jun;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.561-564
    • /
    • 2006
  • The tensile characteristics of four types GFRP (glass fiber reinforced polymer) reinforcing bars with different resin mix proportions and fiber volume fraction were analyzed experimentally. Four types of GFRP reinforcing bars containing approximately 66 or 70% fiber volume fraction with A or B rein mix proportions were considered in this test. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found that GFRP reinforcing bars containing approximately 70% fiber volume fraction with A rein mix proportion showed the higher tensile strength than that of the others due to the higher fiber volume fraction and proper resin mix proportion.

  • PDF

A Study on a Steel Slag Asphalt Concrete Design Method Considering Density and Absorption (밀도와 흡수율을 고려한 제강슬래그 아스팔트 콘크리트의 배합설계 방법 연구)

  • Kim, Kyungnam;Jo, Shinheang;Kim, Nakseok;Kim, Hyunwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • PURPOSES : This paper presents a mix design method for using steel slag as an aggregate for asphalt mixtures. METHODS : Steel slag has a different density and absorption rate than natural aggregates. The asphalt content was calculated according to the steel slag characteristics, and the formula for aggregate-gradation correction was presented. RESULTS : The asphalt mix was designed using the proposed equations. Using the proposed mix design method, it was possible to design the asphalt mixture according to the target-usage amount of the recycled aggregate. CONCLUSIONS : The suggested method can be used for asphalt mix design using aggregates with different densities and absorption rates. It is expected to contribute to quality improvement by ensuring accurate calculation of mixing ratios for steel slag asphalt mixtures.