• Title/Summary/Keyword: concrete lining

Search Result 318, Processing Time 0.031 seconds

Investigation of the Lining Load Induced by Backfill and Consolidation Grouting (배면 및 압밀그라우팅에 의한 터널 라이닝 하중 연구)

  • 박동순;김학준;김완영
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.445-456
    • /
    • 2003
  • Backfill grouting and consolidation grouting are major reinforcing methods that enhance the stability of tunnel by filling the gap between the tunnel lining and the ground and increasing the stiffness of the ground. However, the effect of the grouting on the tunnel lining is not well established. Field measurements such as pressuremeter test, Lugeon test, and lining instruments were peformed to analyze the grouting effect on the tunnel lining for a waterway tunnel. The elastic modulus was increased up to 5 times than that of original rock mass due to consolidation grouting. This study shows that only 10% of grout pressure was acting on the back face of the tunnel lining. The final results are expected to be used for the design of the concrete lining.

Selection of concrete lining corrosion protection method for large sewer tunnels (하수터널의 콘크리트 라이닝 부식 방지공법 선정방법에 관한 고찰)

  • Moon, Joon-Shik;Lee, Sungjune
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.347-360
    • /
    • 2014
  • Recently construction of large sewer tunnels used also as underground sluiceways/storages is increasing in order to prevent urban inundation, untreated sewage flow into rivers from combined sewer overflows and consequential river pollution due to climate change. Most of these large sewer tunnels are constructed with concrete and the concrete lining should be protected from corrosion caused by hydrogen sulfide($H_2S$). This paper introduced popular concrete corrosion protection methods for large sewer tunnels with 100-plus years of life cycle, and pros and cons of each corrosion protection methods were described by giving specific examples. However, it is difficult to objectively assess corrosion protection alternatives because of insufficient track record of corrosion protection methods applied to large sewer tunnels. In this paper, the evaluation process for selecting a corrosion protection alternative was introduced for large sewer tunnels using a case study.

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

Evaluation criteria for freezing and thawing of tunnel concrete lining according to theoretical and experimental analysis

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun;Lattner, Tim
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.349-357
    • /
    • 2022
  • Abnormal climate events are occurring frequently around the world. In particular, cold waves and heavy snow lead to damage and deterioration of facilities, which can cause loss of life or property damage, such as shortening the lifespan of facilities. Therefore, it is very important to prepare an appropriate maintenance system and to establish a strategy to cope with abnormal weather conditions. In this study, laboratory freezing experiments were performed to analyze the freeze-thaw characteristics affecting the tunnel concrete lining, and heat flow analysis was carried out based on the test results. Based on these experimental and theoretical analysis results, quantitative freeze-thaw evaluation criteria for tunnel concrete linings were proposed.

Prediction of Post-cracking Behavior of Synthetic Fiber Reinforced Concrete Beams (합성섬유 보강 콘크리트 보의 후균열 거동 예측에 관한 연구)

  • 오병환;김지철;박대균;한일영;김방래;유홍종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.587-592
    • /
    • 2002
  • Fiber reinforced concrete has been used for tunnel lining and rehabilitation of old structures. Recently, structural synthetic fiber was developed to overcome the corrosive properties of steel fibers. Fibers play a role to increase the tensile and cracking resistance of concrete structures. The Post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of the present study is to develop a realistic analysis method for post cracking behavior of synthetic fiber reinforced concrete members.

  • PDF

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

A Study on Experimental Method of Blasting Vibration in Curing Concrete (양생중인 콘크리트에서의 발파진동의 영향 시험방법에 대한 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.417-422
    • /
    • 2009
  • Tunnels that have recently been constructed are characterized by longer length than ever before and furthermore they frequently go through the ground area with poor conditions such as fractured zones. If ground strength is weak, plastic deformation of tunnel occurs, and occasionally a big fall may be brought about. Up to now, the construction work of tunneling has been executed as a sequential method placing the lining concrete after completion of excavation. Such a method requires a long time and much money to complete the tunnel. It is hard to ensure the stability of tunnel if tunnel is left undone for a long time after excavation in fracture zones or plastic grounds. For this reason, we tried to take simultaneous construction of tunnel excavation and lining concrete in order to not only shorten construction schedule but also stabilize the tunnel at the highly fractures zone as soon as possible. As preliminary consideration for simultaneous construction, in-situ tests are performed to calculate the isolation distance over which blasting vibration does not influence the strength of lining concrete. Improvement of ling form, placing method of concrete, ventilation using a dust collector, together with equipment arrangement, was made to assure the simultaneous construction work.