• Title/Summary/Keyword: concrete layers

Search Result 333, Processing Time 0.027 seconds

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Proposal of DNN-based predictive model for calculating concrete mixing proportions accroding to admixture (혼화재 혼입에 따른 콘크리트 배합요소 산정을 위한 DNN 기반의 예측모델 제안)

  • Choi, Ju-Hee;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.57-58
    • /
    • 2022
  • Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.

  • PDF

A Trend of New Waterproofing System for Building Roof (건축 옥상 방수 신기술의 동향)

  • 우영제;조병영;신주재;김영근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.549-552
    • /
    • 2003
  • User's demand, as a maintenance for durability of construction and a comfortable life, and an incentive systems for new waterproofing system incite waterproofing company to evolve new waterproofing system that is upgraded waterproofing quality by getting advantages for the existing waterproofing systems. There are seven new waterproofing systems for building roof to be authorized from Ministry of construction & transportation. Those are multi-layers waterproofing system, and five of those are the insulation type. A trend of new waterproofing systems for building roof is multi-layers waterproofing system insulated.

  • PDF

A Numerical Study on the Characteristics of Plastic Shrinkage Cracking on Concrete Slab with Sequential Placement (분할타설되는 콘크리트 슬래브의 소성수축균열 특성에 대한 해석적 연구)

  • Kwak, Hyo-Gyoung;Ha, Soo-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.795-808
    • /
    • 2006
  • In this paper, an analytical method which can predict the occurrence of plastic shrinkage cracking on concrete slabs with sequential placement is proposed on the basis of the numerical model introduced in the previous study. The influence of many design variables on plastic shrinkage cracking such as the number of layers and the time interval between layers is quantitatively analyzed through parametric studies using the analytical method. In advance, two equations are introduced to take into account the effect of sequential placement on the plastic shrinkage cracking of concrete slab; The first one is to calculate the time at which the surface of concrete slab begins to dry, and the second one is to determine the critical time interval to prevent the surface drying of previously placed concrete layers. The timing of curing and the sequence of concrete placement, which are important for the prevention of plastic shrinkage cracking, can be effectively planned using the introduced both equations without any rigorous analysis.

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

Experimental-numerical study on the FRP-strengthened reinforced concrete beams with a web opening

  • Abdullah Rafiq Safiaa;Suryamani Behera;Rimen Jamatia;Rajesh Kumar;Subhajit Mondal
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.321-331
    • /
    • 2023
  • The effect of fibre-reinforced polymer (FRP) strengthening on the behaviour of reinforced concrete (RC) beams with web openings is studied. It has been observed that the load-carrying capacity and deflection in the presence of an opening reduced by approximately 50% and 75%, respectively. Three-dimensional nonlinear finite models are first validated with the results obtained from experimental data. Thereafter, a series of parametric studies are conducted for the beam with an opening. In the study, it is observed that a square opening shape is critical in comparison to the elliptical and circular-shaped opening. The web opening located near the support is found to be critically compared to the opening in the middle of the beam. Given the critical opening shape situated at the critical location, the increase in FRP layers enhances the load-deformation behaviour of the FRP-wrapped RC beam. However, the load-deformation responses are not significantly improved beyond a certain threshold value of FRP layers.

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets

  • Mohammad Reza Halvaeyfar;Ehsanollah Zeighami;S. Mohammad Mirhosseini;Ali Hassani Joshaghani
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In many fiber concrete beams with Carbon Fiber Reinforced Polymer (CFRP), debonding occurs between the carbon sheets and the concrete due to the low strength of the bonding resin. A total of 42 fiber concrete beams with a cross-section of 10×10 cm with a span length of 50 cm are fabricated and retrofitted with CFRP and subjected to a 4-point bending test. Graphene Oxide (GO) at 1, 2, and 3 wt% of the resin is used to improve the mechanical properties of the bonding resins, and the effect of length, width, and the number of layers of CFRP and resin material are investigated. The crack pattern, failure mode, and stress-strain curve are analyzed and compared in each case. The results showed that adding GO to polyamine resin could improve the bonding between the resin and the fiber concrete beam. Furthermore, the optimum amount of nanomaterials is equal to 2% by the weight of the resin. Using 2% nanomaterials showed that by increasing the length, width, and number of layers, the bearing and stiffness of fiber concrete beams increased significantly.

Numerical analysis of temperature and stress distributions in a prestressed concrete slab with pipe cooling (파이프쿨링을 실시한 대형 프리스트레스트 콘크리트 슬래브의 수화열 해석)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.275-280
    • /
    • 1999
  • It was analysed the effect of pipe cooling as a measure to avoid thermal cracks due to the heat of hydration during the curing process of a massive prestressed concrete (PSC) slab. PSC slab has a complex three-dimensional shape of which the maximal and minimal thicknesses of cross-section were 2.8 and 0.95m, respectively. Steel pipes of which the diameter was 1 inch were employed for cooling. The horizontal and vertical distances between the contiguous pipes were 0.5 and 0.6m, respectively. One the four layers of cooling pipe were arranged according to the thickness of cross-section. Temperature distribution was calculated by the program developed by the authors, of which the accuracy was verified on a few published papers by the authors. Based on the temperature analysis of the cross-section which had four layers of cooing pipe, the maximum temperature of concrete interior was 54.2$^{\circ}C$ and the maximum differenced between the interior and surface temperatures of concrete was 14.$0^{\circ}C$ and, thereby, the thermal cracking index was 1.1. Upon the stress analysis, the thermal cracking index was 0.92 and the probability of thermal-crack development was 52%. Therefore, it was expected to make it possible to reduce the probability of thermal-crack development in a massive PSC slab by adopting pipe cooling.

  • PDF