• Title/Summary/Keyword: concrete layers

Search Result 332, Processing Time 0.026 seconds

Behavior and stress check of concrete box girders strengthened by external prestressing

  • Zhang, Yu;Xu, Dong;Liu, Chao
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • The deterioration of existing bridges has become a major problem around the world. In the paper, a new model and an associated stress checking method are proposed for concrete box girders strengthened by external prestressing. The new model called the spatial grid model can analyze all the spatial behaviors clearly by transforming the box girder into discrete orthogonal grids which are equivalent to plate elements. Then the three-layer stresses are employed as the stress checking indices to evaluate the stress state of the plate elements. The initial stress check before strengthening reveals the cracked and potential cracking areas for existing bridges, making the strengthening design more targeted and scientific; the subsequent stress check after strengthening evaluates the strengthening effect and ensures safety. A deficient bridge is selected as the practical example, verifying the accuracy and applicability of the proposed model and stress checking method. The results show that principal stresses in the middle layer of plate elements reflect the main effects of external prestressing and thus are the key stress checking indices for strengthening. Moreover, principal stresses check should be conducted in all parts of the strengthened structure not only in the webs. As for the local effects of external prestressing especially in the areas near anchorage and deviator, normal stresses check in the outer and inner layers dominates and local strengthening measures should be taken if necessary.

An Experimental Study on the Rupture Strain Estimation of Fiber Sheets Bonded to Reinforced Concrete Beams (R.C.보에 부착된 섬유시트의 파단변형률 평가에 관한 실험적 연구)

  • Kim, Seong-Do;Hwang, Tea-Ill
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.157-165
    • /
    • 2003
  • The paper deals with the rupture strain estimation of fiber sheets. The experimental study involved tensile testing of 120 fiber sheet specimens and bending testing of 72 concrete beams strengthened with various types of fiber sheets(carbon, glass, and aramid fiber). Concrete beams have 3 types of reinforcement ratios. Rupture strains of fiber sheet specimens are determined by tensile tests to be a little less than the tensile failure strain by the catalog, independently on the number of fiber sheet layers. It is shown that the rupture strain of fiber sheet bonded to reinforced concrete beam is not constant, but decreases as the fiber sheet layer increases. Based on these results, the rupture fiber sheet strain is estimated.

Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

  • Hou, Xiaomeng;Liu, Kunyu;Cao, Shaojun;Rong, Qin
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.333-346
    • /
    • 2019
  • Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

Near-explosion protection method of π-section reinforced concrete beam

  • Sun, Qixin;Liu, Chao
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.209-224
    • /
    • 2022
  • In this study, the numerical analysis model of π-beam explosion is established to compare and analyze the failure modes of the π-beam under the action of explosive loads, thus verifying the accuracy of the numerical model. Then, based on the numerical analysis of different protection forms of π beams under explosive loads, the peak pressure of π beam under different protection conditions, the law of structural energy consumption, the damage pattern of the π beam after protection, and the protection efficiency of different protective layers was studied. The testing results indicate that the pressure peak of π beam is relatively small under the combined protection of steel plate and aluminum foam, and the peak value of pressure decays quickly along the beam longitudinal. Besides, as the longitudinal distance increases, the pressure peak attenuates most heavily on the roof's explosion-facing surface. Meanwhile, the combined protective layer has a strong energy consumption capacity, the energy consumed accounts for 90% of the three parts of the π beam (concrete, steel, and protective layer). The damaged area of π beam is relatively small under the combined protection of steel plate and aluminum foam. We also calculate the protection efficiency of π beams under different protection conditions using the maximum spalling area of concrete. The results show that the protective efficiency of the combined protective layer is 45%, demonstrating a relatively good protective ability.

Flexural performance of RC beams incorporating Zinc-rich and epoxy bonding coating layers exposed to fire

  • Tobbala, Dina E.;Rashed, Ahmed S.;Tayeh, Bassam A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.163-172
    • /
    • 2022
  • Zinc-rich epoxy (ZRE) is used to overcome corrosion problems in reinforced concrete (RC) beams and coat steel rebars to protect them from humidity and chlorides. An extra coating layer of Sikadur-31 epoxy (SDE) is utilised to increase bond strength because the use of ZRE reduces the bond strength between concrete and steel rebars. However, the low melting point of SDE indicates that concrete specimens are vulnerable to fire. An experimental investigation on flexural performance of RC beams incorporating ZRE-SDE coating of steel rebars that were destroyed by fire is performed in this study. Twenty beams of five concrete mixes with different cementitious contents were tested to compare fire exposure for coated and uncoated rebars of the same beams at room temperature and determine the optimal cementitious content. Scanning electron microscopy (SEM) was also applied to investigate characteristics of fired mixture samples. Results showed that the use of SDE-ZRE at room temperature improves flexural strengths of the five mixes compared with uncoated rebars with percentages ranging from 8.5% to 12.3%. All beams with SDE-ZRE lost approximately 50% of their flexural strength due to firing. Moreover, the mix incorporating SF (silica fume) of 15% and cement content of 400 kg/m3 introduces optimum behaviour compared with other mixes. All results were supported and verified by the SEM analysis and compressive strength of cubic specimens of the same mixes.

Investigation on the Development of 3D Concrete Printing(3DPC) Technology Using Coarse Aggregation (굵은 골재를 이용한 3D 콘크리트 프린팅 기술개발에 대한 연구)

  • Hwang, Jun Pil;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.66-77
    • /
    • 2022
  • Digitization and automation technologies have rapidly maximized productivity and efficiency in all industries over the past few decades. Construction automation technology has either stagnated over the same period or has not kept pace with overall economic productivity. According to the research studies up to now, the output of concrete structures using coarse aggregates (8mm or more) is very limited due to the limitations of equipment and materials. In this study, information on the development process of 3DCP equipment that can print concrete structures with the printing width (100 mm or more) and printing thickness (30 mm or more) using a 3DCP material mixed with coarse aggregate (8 mm or more) is provided. To verify the performance of the developed 3DCP equipment, experimental data are provided on output variables, the number of layers, and the inter-layer printing time interval. The evaluation and verification data of various mechanical properties (compressive and splitting tensile strength) of printed materials using coarse aggregates are provided.

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Experimental and FE investigation of repairing deficient square CFST beams using FRP

  • Mustafa, Suzan A.A.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • This paper handles the repairing of deficient square Concrete-Filled Steel-Tube (CFST) beams subject to bending through an experimental and numerical program. Eight square-CFST beams were tested. A 5-mm artificial notch was induced at mid-span of seven beams, four of them were repaired by using CFRP sheets and two were repaired by using GFRP sheets. The beam deflection, strain and ultimate moments were recorded. It was found that providing different cut-off points for the different layers of FRP sheets prohibited failure at termination points due to stress concentrations. Using different lengths of FRP sheets around the notch retarded crack propagation and prevented FRP rupture at the crack position. Finite element analysis was then conducted and the proposed FE model was verified against the recorded experimental data. The influence of various parameters as FRP sheet length, tensile modulus and the number of layers were studied. The moment capacity of damaged square-CFST beams was improved up to 77.6% when repaired by using four layers of CFRP, however, this caused a dramatic decrease in beam deflection. U-wrapping of notched-CFST beam with 0.75 of its length provided a comparable behaviour as wrapping the full length of the beam.

Nonlinear Analysis of RC Structures Using Volume Control Method (체적 제어법을 이용한 철근 콘크리트 구조물의 비선형 해석)

  • Song Ha-Won;Nam Sang-Hyeok;Lee June-Hee;Lim Sang-Mook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.891-897
    • /
    • 2006
  • The volume control method which utilize a pressure node added into a finite shell element can overcome the drawbacks of conventional load control method and displacement control method. In this study, an improved volume control method is introduced for effective analysis of path-dependant behaviors of RC structures subjected to cyclic loading. RC shell structures including RC hollow columns are anlayized by discretizing the structures with layered shell elements and by applying in-plane two dimensional constitutive equations for concrete layers and reinforcement layers of the shell elements. The so-called path dependant volume control method is verified by comparing analysis results with other data including experimental results.

  • PDF

Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

  • Razavi, S.V.;Jumaat, M.Z.;Ahmed H., E.S.;Mohammadi, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.379-390
    • /
    • 2012
  • In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percentage of scoria instead of sand and 0.55 water-cement ratio and 350 $kg/m^3$ cement content is investigated. The experimental result showed 7.9%, 16.7% and 49% decrease in compressive strength, tensile strength and mortar density, respectively, by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data are applied for artificial neural network (ANN) generation using generalized regression neural network (GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with 2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum correlation of determination close to 1.