• Title/Summary/Keyword: concrete fracture test

Search Result 358, Processing Time 0.037 seconds

Fracture Property of Concrete on Spherical and Flat Nose Shape Projectile Impact (반구형과 평탄형 선단 비상체의 충돌을 받는 콘크리트의 파괴특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Kim, Hong-Seop;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.98-105
    • /
    • 2016
  • In this study, projectiles with 2 kinds of nose shape: spherical and flat were impacted into normal concrete and fiber reinforced concrete panels. The fracture depth and form, crater diameter, tensile strain at rear face were evaluated. It was confirmed that smaller projectile nose areas resulted in deeper penetrations associated with concentrated impact forces and small front-face crater diameters in impact test. Conversely, larger projectile nose areas resulted in shallower penetrations and larger front-face fracture diameters. Similar front-face failure and strain distribution relationships based on the projectile nose shape were observed for normal and fiber-reinforced concrete although the rear-face tensile strain and scabbing were significantly reduced by the fiber reinforcement. In addition, a direct relationship was confirmed between the penetration depth based on the projectile nose shape and the tensile strain on the rear face. Thus the impact strain behavior is required to predict the scabbing behavior with penetration depth.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형 능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.59-68
    • /
    • 2010
  • In the present study, the deformation capacity of slender shear walls with thin web subject to inelastic deformation after flexural yielding was studied. Web-crushing and rebar-fracture were considered as the governing failure mechanisms of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

Experimental study on fracture behavior of SCC pavement slab containing crumb rubber under cyclic loading

  • Wang, Jiajia;Chen, Xudong;Wu, Chaoguo;Shi, Zhenxiang;Cheng, Xiyuan
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • The increase in waste tires has brought serious environmental problems. Using waste tires rubber particles as aggregate in concrete can reduce pollution and decrease the usage of natural aggregate. The paper describes an investigation on flexural bearing capacity of self-compacting concrete (SCC) pavement slabs containing crumb rubber. Cyclic loading tests with different stress ratios and loading frequencies are carried out on SCC pavement slabs containing crumb rubber. Based on Paris Law and test data, the fatigue life of SCC pavement slab containing crumb rubber is discussed, and a revised mathematical model is established to predict the fatigue life of SCC pavement slab containing crumb rubber. The model applies to different stress ratios and loading frequencies. The fatigue life of SCC pavement slab containing crumb rubber is affected by the stress ratio and loading frequency. The fatigue life increases with the increase of stress ratio and loading frequency. Real-time acoustic emission (AE) signals in the SCC pavement slab containing crumb rubber under cyclic loading are measured, and the characteristics of crack propagation in the SCC pavement slab containing crumb rubber under different stress ratios and loading frequencies are compared. The AE signals provide abundant information of fracture process zone and crack propagation. The variation of AE ringing count, energy and b-value show that the fracture process of SCC pavement slab containing crumb rubber is divided into three stages.

Parameters influencing redundancy of twin steel box-girder bridges

  • Kim, Janghwan;Kee, Seong-Hoon;Youn, Heejung;Kim, Dae Young
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.437-450
    • /
    • 2018
  • A bridge comprising of two girders, such as a twin steel box-girder bridge, is classified as fracture critical (i.e., non-redundant). In this study, the various bridge components of the twin steel box-girder bridge are investigated to determine if these could be utilized to improve bridge redundancy. Detailed finite-element (FE) models, capable of simulating prominent failure modes observed in a full-scale bridge fracture test, are utilized to evaluate the contributions of the bridge components on the ultimate behavior and redundancy of the bridge sustaining a fracture on one of its girders. The FE models incorporate material nonlinearities of the steel and concrete members, and are capable of capturing the effects of the stud connection failure and railing contact. Analysis results show that the increased tensile strength of the stud connection and (or) concrete strength are effective in improving bridge redundancy. By modulating these factors, redundancy could be significantly enhanced to the extent that the bridge may be excluded from its fracture critical designation.

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

Damage Assessment of RC Column-Bent Pier under Bidirection Loading (이축 하중을 받는 이주형 철근콘크리트 교각의 손상도평가)

  • Park Chang Kyu;Lee Beom Gi;Yun Sang Chul;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.203-206
    • /
    • 2005
  • Reinforced concrete(RC) column-bent piers represent one of the popular piers used in highway bridges of Korea. Seismic performance of RC column-bent piers under bi-directional seismic loadings was experimentally investigated. Six column bent piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. Test parameters are different transverse reinforcement ratio and loading pattern. Three specimens were loaded with bi-directional lateral forces which were main cyclic loads in the longitudinal direction and sub-cyclic loads in the transverse direction. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter specimens were bigger than those of the former specimens. Plastic hinge was formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom part of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

Seismic Performance Of RC Two Column-Bent Piers (2주형 철근콘크리트 원형 교각의 내진 성능)

  • Chung Young Soo;Park Chang Kyu;Lee Bum G;Lee Dae Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.1-4
    • /
    • 2004
  • RC column bent piers represent one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent piers were constructed with two circular supporting columns. Test parameters are different transverse reinforcement and loading pattern. Three specimens were loaded with bidirectional lateral forces which were main cyclic loads in the longitudinal direction and subcyclic loads in the transverse direction. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter specimens were bigger than those of the former specimens. Plastic hinge was formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom part of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

An Experimental Study on the Bond of Steel Fiber Reinforced High-Strength Lightweight Concrete (강섬유보강 고강도 경량콘크리트의 부착에 관한 실험적 연구)

  • 민준수;김상우;이시학;김용부
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.613-616
    • /
    • 1999
  • The bond between reinforcing bar and concrete is a significant factor to confirm that they behave uniformly in the reinforced concrete. Thus, the studies on this field have been conducted by many researchers. But for the high strength lightweight concrete few studies have been done. In this study, the steel fiber reinforced high strength lightweight concrete developed to complement the brittleness of the high strength lightweight concrete was studied experimentally to find the local bond stress. Total 20 specimens were tested and the measured test values were compared with those calculated according to ACI 318-95 code and CEB-FIP code, respectively. The results indicate that the maximum bond stress has been influenced by increment of volume fracture of steel fiber, compressive strength and cover, Especially steel fiber caused not only increment of bond strength but also ductile behaviro.

  • PDF

Size effect in concrete blocks under local pressure

  • Ince, R.;Arici, E.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.567-580
    • /
    • 2005
  • Numerous tests on concrete structure members under local pressure demonstrated that the compressive strength of concrete at the loaded surface is increased by the confinement effect provided by the enveloping concrete. Even though most design codes propose specific criteria for preventing bearing failure, they do not take into consideration size effect which is an important phenomenon in the fracture mechanics of concrete/reinforced concrete. In this paper, six series of square prism concrete blocks with three different depths (size range = 1:4) and two different height/depth ratios of 2 and 3 are tested under concentrated load. Ultimate loads obtained from the test results are analysed by means of the modified size effect law (MSEL). Then, a prediction formula, which considers effect of both depth and height on size effect, is proposed. The developed formula is compared with experimental data existing in the literature. It is concluded that the observed size effect is in good agreement with the MSEL.