• Title/Summary/Keyword: concrete for pavement

Search Result 696, Processing Time 0.025 seconds

Temperature Distribution and It's Contribution to Self-equilibrium Thermal Stress in Bridge (교량 단면 내 온도분포에 따른 자체평형 열응력 해석)

  • Kwak, Hyo-Gyoung;Kwon, Se-Hyung;Ha, Sang-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.531-542
    • /
    • 2011
  • The time-dependent temperature distribution across the section in bridges is determined on the basis of the three-dimensional finite element analyses and numerical time integration in this study. The material properties which change with time and thermal stress of concrete are taken into account to effectively trace the early-age structural responses. Since the temperature distribution is nonlinear and depends upon many material constants such as the thermal conductivity, specific heat, hydration heat of concrete, heat transfer coefficients and solar radiation, three representative influencing factors of the construction season, wind velocity and bridge pavement are considered at the parametric studies. The validity of the introduced numerical model is established by comparing the analytical predictions with results from previous analytical studies. On the basis of parametric studies for four different bridge sections, it is found that the creep deformation in concrete bridges must be considered to reach more reasonable design results and the temperature distribution proposed in the Korean bridge design specification need to be improved.

Fundamental Study on the Strength and Heat Transferring Charcteristic of Cement Composite with Waste CNT (폐CNT를 혼입한 시멘트 복합체의 강도 및 열전달 특성에 대한 기초적 연구)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • The purpose of this study was to develop self-heating concrete by utilizing the conduction resistance of concrete in order to reduce the risk of occurrence of black ice in the concrete pavement in winter and to prevent damage caused by freez-thawing effect. For this purpose, it was attempted to evaluate the strength and temperature exothermic characteristics using powder and liquid waste CNTs and a waste cathode agent as a conduction promotion. It was analyzed that liquid waste CNT had an effective dispersion degree in the mortar and a small decrease in strength occurred. In addition, DC 24 V was supplied by applying steel mesh, copper foil and copper wire to the mortar as electrodes, and the temperature change characteristics according to the mixing ratio of spent CNTs, anodes and carbon fibers were evaluated. In addition, by evaluating the temperature characteristics according to the electrode spacing from the selected optimal mixture, it was confirmed that it had sufficient heating characteristics up to an electrode spacing of 100 mm up to AC 50 V.

Evaluation of the Nonlinearity Parameter in Unbound Material for Asphalt Concrete Pavement using Field-NDT Equipment (현장 도로평가장비를 이용한 입상재료층의 비선형 재료상수 추정에 관한 연구)

  • Seo, Joo Won;Choi, Jun Seong;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.227-234
    • /
    • 2008
  • This study examines which models are more suitable for representing mechanical property of unbound materials to analyze behavior of asphalt pavement structure. Results from FWD (Falling Weight Deflectometer) test were used to apply to nonlinear elastic model. The new method which can deduct material constants of nonlinear elastic model is suggested from FWD test data rather than laboratory resilient modulus ($M_R$) test. It is confirmed that the material constants are within the common range in subbase. Test output from FWD and MDD (Multi-Depth Deflectometer) was used to verify reliability of the model. From the results of verification, this study shows that a non-linear elastic model agrees to MDD test data more than a linear elastic model does.

Mechanical and Durability Properties of Partial-Depth Patch Materials using Polymer Materials for Concrete Pavement (단면보수용 콘크리트 패치재료의 역학적 특성 및 내구성 실험)

  • Yang, Sung-Chul;Hwang, In-Dong;Han, Seong-Hwan;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.23-32
    • /
    • 2009
  • In this paper an experimental program was launched to determine the mechanical and durability properties of spall repair materials (RCC: 3 items, PCC: 2 items, PC: 3 items). Test items were mechanical property tests such as setting times, strengths, modulus of elasticity, plastic shrinkage, and durability tests such as dynamic modulus ratio, bond property with freeze-thaw, water absorption, chemical resistance, ultraviolet exposure. Modulus of the PC products exhibits ductile while the modulus is in the order of RCC > PCC > PC. At early ages the PC products experience higher plastic shrinkage than others, henceforth stable at 28 days. Other test results such as dynamic modulus ratio, absorption, and chemical resistance show that the PCs are superior to the PCCs and the RCCs. Except for PC-2, all patch materials had bond strength more than 1.3MPa after freeze-thaw cycles of 200~300 while the PCs and the PCCs seem to be better than the RCCs. With 500 hours of ultraviolet exposure, all patch materials showed to have no crack or deterioration at the surface.

  • PDF

Development and Research of MMA Waterproof Coating and Waterproof System for Concrete Civil Structures (콘크리트 토목구조물 교면용 MMA 도막방수재 및 교면방수 시스템의 개발 연구)

  • Chul-Woo Lim;Sang-Ho Ji;Ki-Won An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2024
  • Asphalt-based waterproofing materials for bridge decks face issues such as softening or liquefaction of the material during the process of pouring hot asphalt concrete on top of the waterproofing layer. This leads to instability and reduced thickness of the waterproofing layer. To address these problems, new solutions beyond the existing materials, including the development and adoption of new materials, are required. Therefore, this study investigates the properties of MMA(Methyl Methacrylate) coating waterproofing material, which meets the basic physical properties for bridge deck waterproofing. We examined the overall quality standards in a system where the substrate concrete, waterproofing material, and paving layer are integrated. The study confirmed the applicability of MMA coating waterproofing material on bridge decks. The results indicate that a stable application of MMA coating waterproofing material for civil engineering structures' bridge decks can be achieved with a mix ratio of hard MMA resin : soft MMA resin : powder = 6 : 34 : 60. Additionally, when using emulsified asphalt with hardening characteristics for the adhesion between the dissimilar materials of MMA waterproofing and asphalt concrete, it is expected to meet the minimum quality standards of the Ministry of Land, Infrastructure, and Transport's 'Guidelines for Asphalt Concrete Pavement Construction (2021.07)'.

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

Performance Evaluation of Paving Blocks Based Ambient Temperature Reduction Using a Climatic Environment Chamber (기후환경챔버를 활용한 블록의 공기온도 저감 성능평가)

  • Ko, Jong Hwan;Park, Dae Geun;Kim, Yong Gil;Kim, Sang Rae
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.187-192
    • /
    • 2017
  • This study evaluated the reduction performance of ambient temperature and the amount of evaporation that takes place depends on the temperature difference of paving blocks which are used in the sidewalk, roadway, parking lot, park, plaza, and etc. The water-retentive block of the LID (Low Impact Development) practice was compared with the conventional concrete block. For the quantitative performance evaluation, experiments were performed in a climatic environment chamber capable of controlling the climatic environment (solar radiation, temperature, humidity, rainfall, and snowfall). The method for performance evaluation was proposed using temperature, humidity, and ambient air of paving blocks which changes according to the solar radiation and the wind speed after the rainfall. As a result, the evaporation amount of the water-retentive block was 2.6 times higher than that of the concrete block, the surface temperature of water-retentive block was $10^{\circ}C$ lower than the concrete block, and the air temperature of water-retentive block was $4.6^{\circ}C$ lower than the concrete block. Therefore, it is analyzed that the water-retentive block with a large amount of evaporation is more effective in reducing the urban heat island phenomenon as compared with the concrete block.

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

Secondary Mineral Formation and Expansion Mechanisms Involved in Concrete Pavement Deterioration (콘크리트 포장 도로의 성능저하에 관련된 이차광물형성과 팽창메카니즘)

  • ;Rober D. Cody
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.95-109
    • /
    • 2002
  • A significant question is what role does newly-formed expansive mineral growth play in the premature deterioration of concrete. These minerals formed in cement paste as a result of chemical reactions involving cement paste and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from lowa concrete highways that showed premature deterioration. Formation and expansive mechanisms involved in deterioration were Investigated. Brucite, Mg(OH)$_2$, is potentially expansive mineral that farms in cement paste of concretes containing reactive dolomite aggregate as a result of partial dedolomitization of the aggregate. No cracking was observed to be spatially associated with brucite, but most brucite was microscopic in size and widely disseminated in the cement paste of less durable concretes. Expansion stresses associated with its growth at innumerable microlocations may be retrieved by cracking at weaker locations in the concrete. Ettringite, 3CaO.Al$_2$O$_3$.3CaSO$_4$.32$H_2O$, completely fills many small voids and occurs as rims lining the margin of larger voids. Microscopic ettringite is common disseminated throughout the paste in many samples. Severe cracking of cement paste causing premature deterioration is often closely associated with ettringite locations, and strongly suggests that ettringite contributed to deterioration. Pyrite, FeS2, is commonly present in coarse/fine aggregates, and its oxidation products is observed in many concrete samples. Pyrite oxidation provides sulfate ions for ettringite formation.

A Study on the Resistance Against Environmental Loading of the Fine-Size Exposed Aggregate Portland Cement Concrete Pavements (소입경 골재노출콘크리트포장의 환경하중 저항성에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo;Chae, Sung-Wook;Bae, Jae-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2009
  • Fine-size exposed aggregate portland cement concrete pavements (FEACP) have surface texture of exposed aggregate by removing upper 2$\sim$3mm mortar of surface of which curing is delayed by using delay-setting agent. FEACPs have advantages of maintaining low-noise and adequate skid-resistance level during the performance period than general portland cement concrete pavements. It is necessary to ensure the durability environmental loading to prevent unexpected distress during the service life of FEACP. In the process of curing, volume change accompanied change in by moisture and temperature could be an important cause of crack in concrete to construct for successful FEACP, The use of chloride containing deicer may accelerate defects of concrete pavement, such as crack and scaling. This study aim to evaluate environmental loading resistance of FEACP, based on the estimation of shrinkage-crack-control-capability by moisture evaporation and scaling by deicer in freeze-thaw reaction.

  • PDF