• Title/Summary/Keyword: concrete filling

Search Result 278, Processing Time 0.023 seconds

Investigation of the Lining Load Induced by Backfill and Consolidation Grouting (배면 및 압밀그라우팅에 의한 터널 라이닝 하중 연구)

  • 박동순;김학준;김완영
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.445-456
    • /
    • 2003
  • Backfill grouting and consolidation grouting are major reinforcing methods that enhance the stability of tunnel by filling the gap between the tunnel lining and the ground and increasing the stiffness of the ground. However, the effect of the grouting on the tunnel lining is not well established. Field measurements such as pressuremeter test, Lugeon test, and lining instruments were peformed to analyze the grouting effect on the tunnel lining for a waterway tunnel. The elastic modulus was increased up to 5 times than that of original rock mass due to consolidation grouting. This study shows that only 10% of grout pressure was acting on the back face of the tunnel lining. The final results are expected to be used for the design of the concrete lining.

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Physical Properties of Dredged Sand Treated by Washing and Sorting Dredged Soil (하천준설토를 세척 선별한 준설모래의 물리적 특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young;Bae, Kee-Sun;Lee, Sung-Bok;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Most of the dredged sand generated from the sewage pipe maintenance project and the government's four-river project are disposed depending on abandonment and filling-up. This is caused by the lack of related recycling technology using dredged sand appropriately and high absorption rate and micro-particles of dredged sand producted from existing sand production system. Thus, this study carried out a quality assessment for the dredged sand produced through the optimum washing and sorting system supplementing problems of existing dredged sand production system as a part of research to examine performance of removing micro-particles and foreign substances. As a result of the assessment, the dredged sand produced through the cleaning and sorting system showed a wide quality improvement effect in absorption rate, 0.08 mm sieve pass amount, clay lump volume and organic impurity content, and it turned out to satisfy both the quality standards of this study, KS F 2573(recycled aggregate for concrete) and KS F 2526(aggregate for concrete) so it could be confirmed that it would be able to be used as an aggregate for concrete in the future.

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

Physical and Environmental Properties According to Borax Addition Ratios of Inorganic Filling Adhesive using Magnesia Silicate Phosphate (마그네시아 실리케이트 인산염을 활용한 무기충전 접착재의 붕사 첨가율에 따른 물리·환경적 특성)

  • Kim, Tae-Hyun;Shin, Jin-Hyun;Lee, Sang-So
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • The purpose of this study is to develop an inorganic filling adhesive using MKP and borax based on Dead-burn magnesia and fly ash. First, basic experiments was conducted to derive the proper addition rate of MKP. And this experiment was carried out according to addition ratio of borax. The test items are measured for pot life, flexural strength, compressive strength, adhesive strength, tensile strength, ratio of temperature change, ratio of hardening shrinkage, radon gas and formaldehyde emission. As a result, the proper addition rate of phosphate was 35%. The pot time is about 10minutes, 15minutes and 25minutes according to addition rate of borax. The flexural strength and compressive strength were obtained at 12hours for minimum flexural strength of 8.0MPa and minimum compressive strength of 31.0MPa. The tensile strength was the least 4.1MPa, and the ratio of hardening shrinkage was maximum 2.4% and ratio of heat change was maximum - 0.3%, which satisfied all of the quality standards of 'KS F 4923' (epoxy resin for repairing concrete structures). Both Radon gas and formaldehyde emission was not detected.

Case Study on Fracture Type of Wooden Crib Wall (목재 Crib wall의 파괴유형에 대한 사례연구)

  • Shin, Changgun;Paik, Moonyeol;Hong, Cheolhwa;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.39-50
    • /
    • 2013
  • Crib wall is one of the segmental grid retaining walls using headers and stretchers to establish the framework of the wall. In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall. Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall. Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall. However, in the wooden crib wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in the gravel filling was also observed when subjected to the external loading and self-weight of filling. In this study, it was analyzed fracture types and causes of wooden crib wall through detailed investigation and analysis of a large crib wall construction site. As a results, it occurred the damage in the members of 5.7% in a total of 2,315 locations and the damage of header occurred in the members of a header 80.2%. The 65.7% of the damaged header are concentrated in the lower part of crib wall. Therefore, it was analyzed the differences of fracture types and causes of wooden crib wall depending on the installation position and the kinds of members. It is considered basically the members of various forms of distortion and the grain affecting.

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

Rock wool wastes as a supplementary cementitious material replacement in cement-based composites

  • Lin, Wei-Ting;Cheng, An;Huang, Ran;Wu, Yuan-Chieh;Han, Ta-Yuan
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.93-104
    • /
    • 2013
  • The use of rock wool waste, an industrial by-product, in cement-based composites has positive effects on the environment because it reduces the problems associated rock wool disposal. The experiments in this study tested cement-based composites using various rock wool waste contents (10, 20, 30 and 40% by weight of cement) as a partial replacement for Portland cement in mortars. The pozzolanic strength activity test, flow test, compressive strength test, dry shrinkage test, absorption test, initial surface absorption test and scanning electron microscope observations were conducted to evaluate the properties of cement-based composites. Test results demonstrate that the pozzolanic strength activity index for rock wool waste specimens is 103% after 91 days. The inclusion of rock wool waste in cement-based composites decreases its dry shrinkage and initial surface absorption, and increases its compressive strength. These improved properties are the result of the dense structure achieved by the filling effect and pozzolanic reactions of the rock wool waste. The addition of 30% and 10% rock wool wastes to cement is the optimal amount based on the results of compressive strength and initial surface absorption for a w/cm of 0.35 and 0.55, respectively. Therefore, it is feasible to utilize rock wool waste as a partial replacement of cement in cement-based composites.

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF