• Title/Summary/Keyword: concrete faced rockfill dams

Search Result 19, Processing Time 0.031 seconds

Analysis of post-construction deformation characteristics of concrete faced rockfill dams

  • Kim, You-Seong;Won, Myoung-Soo;Song, Young-Chul;Yoon, Deok-Joong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.528-541
    • /
    • 2007
  • To get the possible for management and maintenance, it was analyzed the deformation characteristics, such as crest of embankment and concrete face slab, and leakage of concrete faced rockfill dams (CFRD). There are trends that embankment deformation depends on intact strength used rockfills rather than dam height, deformation normal to concrete face slab during the first reservoir filling is occurred more than 80% of the total deformation in general, and the magnitude and trend of concrete face slab deformation is similar to post-construction crest settlement. The results showed that the range of post-construction crest settlement suggested by Sherard and Cooke (1987), and Clements (1984) had a good agreement in the cases using rockfill with very high intact strength, but it had a trend which underestimated crest settlement in the cases using rockfill with medium to high intact strength. The maximum leakage rate in general was observed during the first reservoir filling and long-term leakage rate was rapidly increased when the dam height exceeds approximately 120m.

  • PDF

An Analysis of the Crack Cause of Concrete Faced Rockfill Dam (사력댐 차수벽 콘크리트의 균열원인 분석)

  • Chae, Young-Suk;Lee, Myeong-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.133-137
    • /
    • 2012
  • Cracking may be used to help predict the cause of deterioration of concrete, since in many cases characteristic cracking patterns are produced. The purpose of this paper is an analysis of the crack cause occurred in concrete faced rockfill dams. We analyzed the concrete placement methods, cracking pattern, the inspection of crack depth by the ultrasonic pulse velocity method, and the measurement of heat of hydration, environmental condition, and so on. In this study, the crack cause of concrete faced rockfill dam is the wrong method of concrete placement, high temperature difference by cement of heat of hydration and concrete of drying shrinkage.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

A Study on Crest Settlement Characteristics of Rockfill Dam (락필댐의 정부침하 거동특성 연구)

  • Park, Han-Gue;Park, Dong-Soon;Kim, Yong-Seong;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1219-1226
    • /
    • 2005
  • In this study, crest settlement characteristics of CFRD (Concrete Faced Rockfill Dam) and ECRD (Earth Cored Rockfill Dam) were analysed through the instrumentation data from representative 7 large dams in Korea. Also, We have studied the effect of valley shape and uniaxial compressive strength of intact rock to better understand the impact of the parent rock strength and the valley shape on the long term crest settlement of CFRDs. From the results, we found that the valley shape and strength of intact rock on crest settlement of dams are an important parameters. As a result, we obtained that the maximum crest settlement of CFRD is larger than that of ECRD and long term crest settlement rate per dam height of rockfill dams is less than 0.60% during service period.

  • PDF

Crack Analysis of CFRD Face Slab Concrete Using Blended Fiber (Blended 섬유를 사용한 CFRD 표면 차수벽 콘크리트의 균열발생 가능성 분석)

  • Woo, Sang-Kyun;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.653-656
    • /
    • 2008
  • The main purpose of this research was to enhance the durability in both the design and construction of dams. Especially, in case of rockfill dams, the durability of face slab concrete in a concrete-faced rockfill dam(CFRD) is achieved by optimizing the fly ash replacement for cement and application of blended fiber. The effect on durability and thermal property corresponding to the increasing replacement of fly ash and application of blended fiber was evaluated, and the optimum value of fly ash replacement and blended fiber application was recommended. The results show that 15% of fly ash replacement and 0.9kg/m3 of blended fiber application was found to be an optimum level and demonstrated excellent performance in durability and thermal property.

  • PDF

Crack Analysis of CFRD Tunnel Concrete Using Fly Ash and Steel Fiber (Fly Ash 및 강섬유를 사용한 CFRD 터널 콘크리트의 균열발생 가능성 분석)

  • Woo, Sang-Kyun;Noh, Jea-Myoung;Cho, Myong-Seok;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.713-716
    • /
    • 2006
  • The main purpose of this research was to enhance the durability in both the design and construction of dams. Especially, in case of rockfill dams, the durability of tunnel concrete in a concrete-faced rockfill dam(CFRD) is achieved by optimizing the fly ash replacement for cement and application of steel fiber. The effect on durability and thermal property corresponding to the increasing replacement of fly ash and application of steel fiber was evaluated, and the optimum value of fly ash replacement and steel fiber application was recommended. The results show that 15% of fly ash replacement and $20kg/m^3$ of steel fiber application was found to be an optimum level and demonstrated excellent performance in durability and thermal property.

  • PDF

Study on Design and Construction of CFRD under Unfavorable Conditions (불리한 조건에서의 콘크리트 표면차수벽형 석괴댐 설계 및 시공)

  • Park Dong-Soon;Kim Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.97-107
    • /
    • 2006
  • Or this study, prevailing design and construction methods of dam under various unfavorable conditions are summarized. for example, foundation treatment with large scale alluvium site or weathered rock mass, dam constructing techniques with unfavorable topographic conditions are studied for the better understanding of relating engineers. Also, zoning by using weak rocks and sand-gravel fill techniques are summed up.

Suitability of Concrete Faced Gravelfill Dam(CFGD) (콘크리트표면차수벽형 사력댐(CFGD)의 적용성 고찰)

  • Kim, Bum-Joo;Im, Eun-Sang;Lim, Jeong-Yeul;Park, Han-Gyu;Lim, Heui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.818-823
    • /
    • 2006
  • In this study, the suitability of CFGD(concrete faced gravefill dam) was investigated by examining the strength and deformation characteristics of a gravelfill material, a CFGD main fill material, and comparing them with those of several rockfill dam materials. The gravelfill material exhibited similar strength and deformation properties to those of the main fill materials of existing stable large rockfill dams. Since not only CFGD has environmental and economic advantages over CFRD, but its main fill material compares favorably with those of the existing stable CFRDs, CFGD may be the best choice when natural gravel materials are abundant in the vicinity of the dam construction location.

  • PDF

A Study On The Deformation Behavior of Post-Construction Crest Settlement, Face Slab Deformation, and Leakage of Concrete Faced Rockfill Dams (콘크리트 표면차수벽형 석괴댐의 준공 후 정부침하와 슬래브 변형 및 누수 거동에 관한 연구)

  • Kim, You-Seong;Choi, Jae-Seon;Won, Myoung-Soo;Lee, Hee-Hun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.31-39
    • /
    • 2009
  • The purpose of present study performed 27 CFRD cases analyses to predict and effectively use post-construction crest settlement, face slab deformation, and leakage as indexes for the maintenance and management of concrete faced rockfill dams(CFRD). The results showed that the range of post-construction crest settlement suggested by Sherard and Cooke (1987), and Clements (1984) had a good agreement in the case analyses using rockfills with very high intact strength, but it had a trend which underestimated crest settlement in the cases using rockfills with medium to high intact strength. The leakage case analyses showed that leakage is mainly caused by face slab deformation due to the water load, the maximum leakage in general was observed during the first reservoir filling, and leakage was rapidly increasing when the dam height exceeds 125m.

  • PDF