• 제목/요약/키워드: concrete cylinders

검색결과 103건 처리시간 0.025초

경계요소법에 의한 콘크리트 원통형관의 파괴해석 (Fracture Analysis of Concrete Cylinder by Boundary Element Method)

  • 송하원;전재홍;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF

Size Effect of Axial Compressive Strength of CFRP Confined Concrete Cylinders

  • Akogbe, Romuald-Kokou;Liang, Meng;Wu, Zhi-Min
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.49-55
    • /
    • 2011
  • The main objective of this investigation is to study size effect on compressive strength of CFRP confined concrete cylinders subjected to axial compressive loading. In total 24 concrete cylinders with different sizes were tested, small specimens with a diameter of 100 mm and a height of 200 mm, medium specimens with a diameter of 200 mm and a height of 400 mm, and big specimens with a diameter of 300 mm and a height of 600 mm. The lateral confining pressure of each specimen is the same and from that hypothesis the small specimens were confined with one layer of CFRP, medium and big specimens were performed by two and three layers of CFRP respectively. Test results indicate a significant enhancement in compressive strength for all confined specimens, and moreover, the compressive strengths of small and medium specimens are almost the same while a bit lower for big specimens. These results permit to conclude that there is no size effect on compressive strength of confined specimens regardless of cylinder dimension.

인발법을 포함한 비파괴시험법에 대한 특성 비교 (A Study on the Characteristics of Nondestuctive Tests Including Pullout Test)

  • 고훈범;정성원;음성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.211-215
    • /
    • 1996
  • This paper presents comparisons of pullout load of concrete with compressive strength of cylinders and cores, pulse velocity, and rebound number. A pullout test, which is a relatively new nondestructive technique, measures with a special tension ram the force required to pullout a specially shaped steel rod whose enlarged end has been cast into a concrete block. In this study 3 concrete mixes(normal strength, high-strength & super-high-strength) were made. From each mix, one 100$\times$70$\times$20 concrete block, 24 cylinders$(\phi10mm)$were casted. Each tests were performed on the concrete blocks at 3, 7, 28, and 91days. The test data shows that the pullout test is superior to the rebond hammer and the pulse velocity measurements on the evaluation of concrete strength. The pullout test is satisfactory for estimating the strength of in situ concrete at both early and late age, and its results can be reproduced with an acceptable degree of accuracy.

  • PDF

A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming

  • Sema, Alacali
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.377-391
    • /
    • 2022
  • The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.

탄소섬유쉬트로 횡구속된 콘크리트 공시체의 압축 거동에 관한 연구 (A Study on the Axial Behavior of the Concrete Cylinders Confined by Carbon Fiber Sheets)

  • 황진석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.141-148
    • /
    • 2000
  • Recently the Carbon Fiber Sheet(CFS) is widely used for strengthening damaged RC structures. Strengthening compression members such as column can increase ductility and strength due to the confinement effect. In this experiment, the behavior of concrete cylinders confined by CFS was examined. The confinement pressure is increased linearly as axial stress is increased in low axial stress, and the confinement effect of CFS was rapidly developed after near maximum axial stress, thus axial strength and ductility was improved. As the ratio of CPS is increased, concrete cylinders failed due to local fracture of CFS. The confinement effect of circular section is more efficient than that of rectangular section. And significant improvement of axial strength, axial strain, transverse strain at failure is observed in circular section. This is because in rectangular section the local fracture of CFS near corner may be occured, thus the strain efficiency ratio must be considered for RC structures with CFS.

  • PDF

Ultimate strength and strain models proposed for CFRP confined concrete cylinders

  • Berradia, Mohammed;Kassoul, Amar
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.465-481
    • /
    • 2018
  • The use of external carbon-fiber-reinforced polymer (CFRP) laminates is one of the most effective techniques existing for the confinement of circular concrete specimens. Currently, several researches have been made to develop models for predicting the ultimate conditions of this type of confinement. As most of the major existing models were developed based on limited experimental database. This paper presents the development of new confinement ultimate conditions, strength and strain models, for concrete cylinders confined with CFRP composites based on a statistical analysis of a large existing experimental database of 310 cylindrical concrete specimens wrapped with CFRP. The database is used to evaluate the performance of the proposed and major existing strength and strain models. Based on the two different statistical indices, the coefficient of determination ($R^2$) and the Root Mean Square Error (RMSE), the two proposed confinement ultimate conditions presents a good performance compared to the major existing models except the models of Lam and Teng (2003) and Youssef et al. (2007) which have relatively similar performance to the proposed models.

탄소섬유쉬트와 나선형철근으로 동시에 구속된 콘크리트의 응력-변형률 관계에 대한 실험적 연구 (An Experimental Study on the Stress-Strain Relationship of Concrete Confined with Spiral & Carbon Fiber Sheets)

  • 정훈식;오영준;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.537-542
    • /
    • 2003
  • The stress-strain curve of concrete confined with both spiral and carbon fiber sheet(CFS) is different to that of concrete confined with only spiral or CFS. The objective of this study is to investigate the stress-strain relation of concrete confined by composite material. In this study, 24 concrete cylinders were tested. The main variable of the cylinders was the content rate of spiral to CFS. The test results indicated that while the compressive strength of cylinder confined with both spiral and CFS increased proportionally to the aided amount of two materials, the maximum strain of cylinder depended on the larger strain of spiral or CFS.

  • PDF

RC 기둥 보강을 위한 새로운 강판 보강기법 및 수정 연속체 모델 (A new steel jacketing method for RC columns and a modified constitutive model of jacketed concrete)

  • 태기호;최은수
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.675-681
    • /
    • 2008
  • 본 연구에서는 강자켓을 이용하여 RC 기둥을 보강하는 기법으로 분리되지 않은 스테인리스-강자켓으로 보강된 콘크리트 공시체를 제작하여 횡방향 구속응력을 적용시켜 보강 하는 방법을 제안하였다. 제시된 기법의 성능을 평가하기 위해 1.0, 1.5 및 2.0 mm 두께로 제작된 강판을 변수로 하여 3개의 무보강과 9개의 보강 콘크리트 공시체를 제작하였다. 횡방향 구속응력 도입을 위해 클램프가 사용되었으며 보강된 시 편과 보강되지 않은 시편의 압축실험의 결과가 비교 분석 되었다. 실험결과 보강 강판의 두께가 증가할 수 록 압축강도가 증가했으며, 강자켓과 콘크리트는 복합거동을 하지 않으며, 실린더 중앙부가 팽창되는 것을 확인할 수 있었다. 마지막으로 실험 데이터로부터 얻은 콘크리트 공시체의 응력-변형률을 Li의 연속체 모델로 재현하여 비교 분석하였다. Li의 제안모델은 콘크리트 공시체의 항복 후의 거동에서는 오차가 커 적용이 어려움에 착안하여 수정된 Li 모델을 제안하였다. 수정된 Li 모델은 Li 모델에서 항복 후 영역의 n 값을 수정하여 얻어졌으며, 이 모델은 콘크리트의 항복 전 그리고 항복 후에도 실험값과 유사하게 재현됨을 알 수 있었다. 이로써 Li 모델의 n 값을 적절히 조절하면 실험값을 재현하는데 긍정적으로 쓰일 것으로 판단된다.

외측 횡 구속된 콘크리트 공시체의 내진 거동 (Seismic Behavior of Concrete Cylinders Reinforced by Outside Lateral Hoops)

  • 최은수;김병화;신재관;이도형
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.45-51
    • /
    • 2014
  • This paper investigates experimentally the confinement effect on concrete. For this purpose, outside lateral reinforcement members made of stainless steel and GFRP were employed. Then, uniaxial compressive tests on concrete cylinders incorporating the members were conducted. A total of 30 cylinder specimens, specifically, 6 unconfined specimens, 12 specimens confined by stainless steel and 12 specimens confined by GFRP, were fabricated. The failure patterns of both unconfined and confined specimens were assessed and discussed based on experimental results. The results proved that the maximum stress and corresponding strains of the cylinders confined using the proposed hoops are increased in comparison with those of the unconfined. This supports that the current work can be used for retrofitting concrete members and structures and thus may lead to increased stability of such structures.

휨.압축 하중을 받는 콘크리트 부재의 크기효과 (Size Effect for Flexural Compression of Concrete Specimens)

  • 김진근;이성태;양은익;김민욱;이상순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.371-376
    • /
    • 1998
  • In this study, the size effect of concrete members subjected to the axial load and bending moment is investigated using a series of C-shaped specimens of which test procedure is similar to those of Hognestad, Hanson, and McHenry's. Main test variable is a size ratio of the specimens(1:1/2:1/4) at the concrete compressive strength of 500kg/㎠. Test results show that the flexural compression strength at failure decreases as the size of specimen increases, that is, the size effect law is present. Model equation is derived using regression analyses with experimental data and it is compared with formulas for compressive strength of cylinders and shear strength of beams without stirrups. Size effects is distinct th following sequence; shear strength of beams without stirrups, compressive strength of C-shaped specimens, compressive strength of cylinders.

  • PDF