• Title/Summary/Keyword: concrete cracking

Search Result 1,431, Processing Time 0.023 seconds

Flexural Behavior of Reinforced Concrete Beams Considering Steel Corrosion (철근의 부식을 고려한 RC보의 휨파괴 거동)

  • Eo, Seok-Hong;Lee, Chang-Hyun;Lee, Sang-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3251-3259
    • /
    • 2014
  • This paper presents experimental and analytical research results to predict nonlinear flexural behavior of corroded reinforced concrete beams. For this purpose, a series of test and an analytical simulation using the Maaddawy's model were carried. Test specimens of total 12 RC beams were placed in accelerated corrosion status using salt water spray test chamber for 5 months and 10 months, after they were preloaded up to 30% and 60% of the maximum load corresponding to nominal flexural strength. The test results showed that flexural strength and ductility decreased to 5.4% and 43% at the most respectively due to breakdown of bond at the steel-concrete interface. Comparative study between the analytical predictions and the experimental results showed that the Maaddawy's model can be applied to predict a real corroded RC flexural members.

Evaluation for Application of Warm-mix Asphalt Concrete for Rural Road Pavement (농촌 도로 포장용 준고온 아스팔트 콘크리트 적용 평가)

  • Lee, Sungjin;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.41-50
    • /
    • 2021
  • The asphalt pavement industry has introduced the warm-mix asphalt (WMA) as a mean of energy saving and environmentally safe technology, because the WMA mixture can be mixed and compacted at 30℃ lower than conventional hot-mix asphalt (HMA) at 160℃ or higher. The implementation of WMA can be a good option for paving operations for rural road in remote place, not only due to energy saving and environmental issues, but also lower working temperature. Using WMA technology, the cooled-down asphalt mixture can be still compacted to meet the quality requirement in narrow winding rural road in remote places. Therefore, this study is designed to evaluate engineering properties of WMA binders and concretes, which were prepared for rural road pavement. The objective of the study was to evaluate and suggest proper fundamental properties level of the WMA concrete for rural road pavement. The kinematic viscosity test result indicated that the WMA binders used in this study were effective for compaction at lower temperature, i.e., at 115℃, compared to the HMA binder. According to strength property analyses, it was found that the WMA concrete was acceptable for rural road pavement even though it was compacted at 30℃ lower level. Since the deformation strength (SD) of 3.2 MPa was found to satisfy rutting and cracking resistance minimum guidelines, this value was suggested as a minimum SD value for rural road pavement, considering lack of maintenance program for rural area.

Examining and Refining the Code for Durability Design Criteria of Concrete Carbonation (개정 콘크리트 탄산화 내구성 설계기준의 적용상 문제점 분석)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.285-293
    • /
    • 2023
  • In this research, we embarked on a meticulous analysis of the challenges inherent in real-world scenarios relating to the durability design standards of engineered concrete structures and the assessment of carbonation durability in concrete guidelines. Our investigation brought to light substantial issues concerning constructability and quality assurance. The genesis of these problems is the exclusive application of prescribed strength to exterior walls, neglecting other elements to facilitate smoother licensing procedures. While this methodology aims to mitigate financial constraints in alignment with enhanced standards, it invariably invites complications. Furthermore, it is imperative to resolve the uncertainty surrounding durability evaluations by establishing a clear and definitive objective. Alongside this, actionable steps must be formulated to forestall the emergence of fissures between the floors of residential buildings, particularly apartment complexes. It is equally essential to tackle issues connected to application by devising a comprehensive management strategy for potential cracking during the phase of maintenance.

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Applications of Practical Analysis Scheme for Evaluating Effects of Over-Loads during Construction on Deflections of Flat Plate System (플랫 플레이트 시스템의 처짐에 대한 시공 중 과하중의 영향 평가를 위한 실용해석 기법의 적용)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • RC flat plate, which has no large flexural stiffness by boundary beams, may be governed by serviceability as well as strength condition. A construction sequence and its impact on distributions of construction loads among slabs tied by shores are decisive factors on immediate and long term performances of flat plate. The over-loading and tensile cracking in early-aged slabs significantly increase the deflection of flat plate system. In this study, for slab deflections, the practical analysis scheme using a linear analysis program is formulated with considering construction sequence and concrete cracking effects. The concept of the effective moment of inertia in calculating deflections of one-way bending member, that is presented in structural design codes, is extended to the finite element analysis of the two-way slab system of flat plates. Effects of over-loads during construction on deflections of flat plate system are analyzed by applying the proposed practical analysis scheme into the critical construction load conditions calculated from the simplified method.

Evelopment of a Practical Mechanistic-Empirical design Procedure for Flexible Pavements (역학적이론과 경험에 근거한 실용적 연성포장 설계법 개발)

  • Park, Dong-Yeob;Kim, Hyung-Bae;Buch, Neeraj;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.1-13
    • /
    • 2002
  • Design methods for new flexible pavements and overlays are in the transition from empirical to mechanistic approach, and many state highway agencies trend to move toward the adoption and use of mechanistic-empirical (M-E) design in new constructions and rehabilitations of flexible pavements. Hence, the Michigan Department of Transportation (MDOT) decided to develop a M-E flexible pavement design procedure, in which major pavement distresses such as fatigue cracking and rutting are employed as indicators of the serviceability of a flexible pavement. The main concept of the developed design procedure is that a designed pavement that is supposed to carry a certain number of traffic must satisfy designated thresholds of rut depths and fatigue lives during a service period. For the M-E design procedure, transfer functions were developed to predict rut-depths and fatigue lives. These functions related the pavement responses to pavement performance. For validation, three current new flexible pavement design cases were obtained from the MDOT. In these cases, asphalt concrete (AC) layer thicknesses determined by the suggested M-E procedure compare favorably with those determined by the current MDOT design practice that is based on AASHTO design guide. This finding implies that the suggested Michigan M-E flexible pavement design procedure can provide a good opportunity to improve the current design practice.

  • PDF

Application of Load and Resistance Factor Design Format to Designing Flexible Pavements (LRFD 기법을 활용한 연성포장 설계방안에 관한 연구)

  • Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.1-10
    • /
    • 2003
  • The objective of pavement design, just as with the design of other structures, is to obtain the most economical designs at specified levels of reliability. Methods that yield designs with different levels of reliability are undesirable, and over the course of time design approaches in the U.S. and Europe have converged toward the Load and Resistance Factor Design (LRFD) format in order to assure uniform reliability. At present the LRFD format has been implemented in concrete, steel, wood and bridge design specifications. In this paper, reliability theories are used to illustrate the development of an LRFD format for Mechanistic-Empirical (M-E) design of flexible pavements as an alternative of its reliability module. It is shown in this paper that ten candidate pavement sections designed with a reliability level using the AASHTO design guide (1986) do not have uniform structural reliability in terms of pavement mechanistic distress such as fatigue cracking and the uniform reliability can be achieved by using the LRFD format.

  • PDF

Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method (적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kim Jin-Kook;Kwak Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.1-13
    • /
    • 2006
  • An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

Influence of Inadequate Rebar Lap Position on Crack of Underground Box Slab (철근 겹침이음 위치 부적정이 지하박스 슬래브 균열 발생에 미치는 영향)

  • Choi, Jung-Youl;Jang, In-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.685-692
    • /
    • 2020
  • In this study, the experimental and analytical study were performed on the location of longitudinal cracks in the middle of underground box structures. The location where the longitudinal cracking occurred was investigated that the overlapping joint of the rebar and the section of maximum tensile stress generated. Using the finite element analysis, the strength reduction ratio of the rebar was estimated by lack of overlap joint length. As the result of adequacy investigation for the length of the overlap joint presented in the design criteria, it was analytically proved that the lack of the overlap joint length could be cause the decreasing cross-sectional force and concrete cracking. As the result of this study, the adequacy of the overlapping criterion in the current design criteria was confirmed based on the finite element analysis and actual field case. In the case of overlapping joints installed in inappropriate position, it was considered that a long term crack control would be need to ensure the sufficient safety factor for the designed cross-sectional force.

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.