• 제목/요약/키워드: concrete contribution

검색결과 393건 처리시간 0.021초

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.

극한하중상태에서 비부착 긴장재의 응력평가에 관한 실험연구 (Experimental Study on Stress Evaluation Study on Stress Evaluation of Unbonded Tendon under Ultimate Load)

  • 임재형;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.519-524
    • /
    • 1998
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the experimental study, a test program with 14 beams and slabs was planed to identify the contribution of each important variable. The variables are (1) the effective prestress, (2) the concrete strength, (3) the amount of tendons (4) the amount of bonded reinforcements, (5) the loading type, (6) the span/depth ratio. It was found that the tendon stress increment decreases as the effective prestress increases. Also, the contributions of concrete strength, amount of tendons, bonded reinforcements, and loading type were observed to affect on tendon stresses. However, the tendon stress increments were minimal at high values of span/depth in contrast with the ACI Code.

  • PDF

RC 부재의 전단거동에 미치는 축력의 영향에 대한 연구 (Effect of Axial Force on Shear Behavior in Reinforced Concrete Beams)

  • 정제평;김대중;염환석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.264-267
    • /
    • 2004
  • It is well known that axial tension decreases the shear strength of RC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the concrete contribution is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams.

  • PDF

Combined effect of CFRP-TSR confinement on circular reinforced concrete columns

  • Berradia, Mohammed;Kassoul, Amar
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.41-49
    • /
    • 2017
  • The use of external carbon-fiber-reinforced polymer (CFRP) wraps is one of the most effective techniques existing for the confinement of the circular concrete columns. Currently, several researches have been made to develop models for predicting the behavior of this type of confinement. The disadvantage of the most models, is to not take into account the contribution of the transverse steel reinforcements (TSR) effect, However, very limited models have been recently developed that considers this combined effect and gives less accurate results. This paper presents the development of a new model for the axial behavior of circular concrete columns confined by combining external CFRP warps-and-internal TSR (hoops or spirals) based on the existing experimental data. The comparison between the proposed model and the experimental results showed good agreement comparing to the several existing models. Moreover, the expressions of estimating the ultimate strength and the corresponding strain are simple and precise, which make it easy to use in the design applications.

Numerical method for biaxially loaded reinforced and prestressed concrete slender columns with arbitrary section

  • Lou, T.J.;Xiang, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.587-601
    • /
    • 2008
  • In this study, a numerical procedure based on the finite element method for materially and geometrically nonlinear analysis of reinforced and prestressed concrete slender columns with arbitrary section subjected to combined biaxial bending and axial load is developed. In order to overcome the low computer efficiency of the conventional section integration method in which the reinforced concrete section is divided into a large number of small areas, an efficient section integration method is used to determine the section tangent stiffness. In this method, the arbitrary shaped cross section is divided into several concrete trapezoids according to boundary vertices, and the contribution of each trapezoid to section stiffness is determined by integrating directly the trapezoid. The space frame flexural theory is utilized to derive the element tangent stiffness matrix. The nonlinear full-range member response is traced by an updated normal plane arc-length solution method. The analytical results agree well with the experimental ones.

ACI 318-02 기준으로 설계된 철근콘크리트 보의 비틀림 강도 검토 (Torsional Strength of RC Beams Designed according to ACI 318-02 Building Code)

  • 이정윤;김상우;황현복;김지현;박지선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.255-258
    • /
    • 2005
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. In this study, 9 RC beams subjected to pure torsion were tested. The main parameter of the beams was the amount of torsional reinforcement and the angle of twist. Test results indicated that the current ACI code over-estimated the torsional strength of RC beams that had larger amount of torsional reinforcement.

  • PDF

Shear-Strengthening of Reinforced & Prestressed Concrete Beams Using FRP: Part I - Review of Previous Research

  • Ary, Moustapha Ibrahim;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2012
  • Fiber-Reinforced Polymers (FRP) are used to enhance the behavior of structural components in either shear or flexure. The research conducted in this paper was mainly focused on the shear-strengthening of reinforced and prestressed concrete beams using FRP. The main objective of the research was to identify the parameters affecting the shear capacity provided by FRP and evaluate the accuracy of analytical models. A review of prior experimental data showed that the available analytical models used to estimate the added shear capacity of FRP struggle to provide a unified design equation that can predict accurately the shear contribution of externally applied FRP. In this study, the ACI 440.2R-$08^1$ model and the model developed by Triantafillou and Antonopoulos$^2$ were compared with the prior experimental data. Both analytical models failed to provide a satisfactory prediction of the FRP shear capacity. This study provides insights into potential reasons for the unsatisfactory prediction.

유리섬유보강 플라스틱바의 콘크리트 적용성에 관한 연구 (The Application of Glass Fiber Reinforced Plastic Bar to Concrete)

  • 김경수;김재욱;문장수;배주성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.669-675
    • /
    • 1997
  • This paper investigates the performances of GFRP bar and its possibility for using a substitute of steel bar. GFRO bar was made with introducing the glass fiber into GTR added UPE. We carried out the tensile test of GFRP and steel bar and out the three point bend test bond-test and fracture energy measurement on the GFRP bar and steel bar reinforced concrete. The GFRP bar was excellent as comparison with steel bar in the contribution to the energy absorption and the ductility of concrete. But its tensile, bond and bend strengthes were comparatively small. In order to improve these defects, we judged that glass fibers in GFRP bar must be completely adhesive one another by the impregnating glass fibers into UPE.

  • PDF

Micro-concrete composites for strengthening of RC frame made of recycled aggregate concrete

  • Marthong, Comingstarful;Pyrbot, Risukka N.;Tron, Stevenly L.;Mawroh, Lam-I D.;Choudhury, Md. Sakil A.;Bharti, Ganesh S.
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.461-468
    • /
    • 2018
  • In this paper, to access the suitability of recycled aggregate for structural applications, concrete strength i.e., compressive, tensile and flexural strength were evaluated and compared with those specimens made of natural aggregates. Test results indicated that 30 to 42% of the mentioned strength decreases. To study the performance of frame structures made of recycled aggregate concrete (RAC) two reinforced RAC frames were prepared and tested under monotonic loading. The joint regions of one of the RAC frame were casted with micro-concrete. A reference specimen was also prepared using natural aggregate concrete (NAC) and subjected to a similar loading condition. The RAC frame resulted in a brittle mode of failure as compared to NAC frame. However, the presence of a micro-concrete at the joint region of an RAC frame improved the damage tolerance and load resisting capacity. Seismic parameter such as energy dissipation, ductility and stiffness also improves. Conclusively, strengthening of joint region using micro-concrete is found to have a significant contribution in improving the seismic performance of an RAC frame.

Low strength concrete members externally confined with FRP sheets

  • Ilki, Alper;Kumbasar, Nahit;Koc, Volkan
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.167-194
    • /
    • 2004
  • In this paper axial loading tests on low strength concrete members, which were confined with various thickness of carbon fiber reinforced polymer (CFRP) composite sheets are described. Totally 46 specimens with circular, square and rectangular cross-sections with unconfined concrete compressive strengths between 6 and 10 MPa were included in the test program. During the tests, a photogrammetrical deformation measurement technique was also used, as well as conventional measurement techniques. The contribution of external confinement with CFRP composite sheets to the compressive behavior of the specimens with low strength concrete is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. The effects of width/depth ratios and the corner radius of the specimens with rectangular cross-section on the axial behavior were also examined. It was seen that the effectiveness of the external confinement with CFRP composite sheets is much more pronounced, when the unconfined concrete compressive strength is relatively lower. It was also found that the available analytical expressions proposed for normal or high strength concrete confined by CFRP sheets could not predict the strength and deformability of CFRP confined low strength concrete accurately. New expressions are proposed for the compressive strength and the ultimate axial strain of CFRP confined low strength concrete.