• Title/Summary/Keyword: concrete column

Search Result 2,209, Processing Time 0.025 seconds

Simulation of cyclic response of precast concrete beam-column joints

  • Adibi, Mahdi;Talebkhah, Roozbeh;Yahyaabadi, Aliakbar
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Experience of previous earthquakes shows that a considerable portion of concrete precast buildings sustain relatively large damages especially at the beam-column joints where the damages are mostly caused by bar slippage. Precast concrete buildings have a kind of discontinuity in their beam-column joints, so reinforcement details in this area is too important and have a significant effect on the seismic behavior of these structures. In this study, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints in usual practice of precast concrete building. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints. In addition, the seismic behavior of the precast building damaged during Bojnord earthquake 13 May 2017, is investigated by using the proposed model for the beam-column joints. Damage unexpectedly inducing the precast building in the moderate Bojnord earthquake may confirm that bearing capacity of the precast building was underestimated without consideration of joint behavior effect.

A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column (철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구)

  • Mun, Sang-Hun;An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Ductility Characteristics of a Hollow R.C Pier Internally Confined by a Corrugated Steel Tube (파형강관으로 내부구속된 중공 R.C 교각의 연성도)

  • Han Taek Hee;Kim Sung Nam;Kang Young Jong;Jung Doo-Suk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.712-717
    • /
    • 2005
  • When the weight if a concrete member makes problems, or when the cost of the concrete is relatively high, it may be economical to use a hollow concrete member. But a hollow R.C column may have poor ductility because of the brittle failure at the inner face of the hollow R.C column. This brittle failure results from the absence of the confinement at the inner face of the hollow R.C column. To avoid this brittle failure an internally confined hollow R.C column by a steel tube was developed before. In this study, a hollow R.C column is internally confined by a corrugated steel tube instead of a general flat steel tube. And a column ductility is performed. Test results show that the energy ductility ratio of a internally confined hollow R.C column by a by a corrugated steel tube corresponds to $80\%$ of the energy ductility ratio of a general solid R.C column.

  • PDF

Variations of Column Shortening with Parameters (매개변수에 따른 기둥축소량 변화에 관한 연구)

  • 정은호;김형래
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

Study on seismic behavior of fabricated beam-column bolted joint

  • Zhang, Yu;Ding, Kewei
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • To better promote the development of fabricated buildings, this paper studies the seismic behavior of precast concrete beam-column bolted joint under vertical low cyclic loading. The experimental results show that cracks appear in the beam-column joint core area. Meanwhile, the concrete and the grade 5.6 bolts are damaged and deformed, respectively. Specifically, the overall structure of the beam-column joint remains intact, and the bolts have good energy dissipation capacity. Based on the experimental study, a new method of beam-column bolted connection is proposed in simulation analysis. The simulation results show that the bolts deform in the core area of the new beam-column joint, which enhances the concrete shear capacity legitimately and protects the T-end of the beam against shear failure. To summarize, both the experimental joint and the simulated joint prolong the service life by replacing the bolts under the seismic loading. The research results provide a reference for applications of the fabricated beam-column joint.

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

Experiments on Second -Order Behavior of High Strength Concrete Columns (고강도 콘크리트 기둥의 2계 거동에 관한 실험적 연구)

  • 김진근;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.167-172
    • /
    • 1992
  • To analyze the effects compressive strength of concrete and longitudinal steel ratio on second-order moment of columns, 30tied rein reinforced concrete columns with hinged ends were tested. The 80mm square cross section was used and the amount of eccentricity was 24mm. The compressive strengths of column specimens with slenderness ratios of 10, 60, and 100were 250, 648 and 880kg/$\textrm{cm}^2$, and the longitudinal steel ratios were 1.98%(4-D6) and 3.95%(8-D6). The ratio of ultimate load capacity to that of short column with the same eccentricity (Pu/Pn) was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of slender column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that with increasing steel ratio, the value of Pu/Pn and the lateral displacement at the ultimate load were larger for the same slenderness ratio.

  • PDF

Tests on fiber reinforced concrete filled steel tubular columns

  • Gopal, S. Ramana;Devadas Manoharan, P.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.37-48
    • /
    • 2004
  • This paper deals with the strength and deformation of both short and slender concrete filled steel tubular columns under the combined actions of axial compression and bending moment. Sixteen specimens were tested to investigate the effect of fiber reinforced concrete on the ultimate strength and behavior of the composite column. The primary test parameters were load eccentricity and column slenderness. Companion tests were also undertaken on eight numbers of similar empty steel tubes to highlight the synergistic effects of composite column. The test results demonstrate the influence of fiber reinforced concrete on the strength and behavior of concrete filled steel tubular columns.