• Title/Summary/Keyword: concrete casting

Search Result 195, Processing Time 0.023 seconds

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.

Design Technology of High Speed and Precision Machining Center (초곡속 고정밀 머시닝 센터 설계 기술)

  • Kim, Bup-Min;Choi, Won-Sun;Ha, Jae-Young;Kim, Tae-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.869-877
    • /
    • 2011
  • In order to manufacture precision parts which are used for IT and BT Industry by machining, users need higher speed & precision machining center. So, for development of this kind of machine, we designed gantry type machining center which is piling of 3 axes on one moving body and the 2-axis rotary table is fixed on the base. It is applied linear motor that is instead of ball-screw and servo-motor combination and 50,000 rpm high-speed spindle. Composite material structure called mineral casting or resin concrete is applied also. This paper presents design technology and evaluated results of high speed and precision machining center.

A Comparative Analysis of Operating Ratio for Reinforced Concrete Construction by Occupation classification (철근 콘크리트 공사의 직종별 가동률 비교·분석)

  • Lee, Kang-Hyup;Kim, Min-Jae;Shin, Won-Sang;Son, Chang-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.200-201
    • /
    • 2014
  • The construction industry in recent years, due to the multi-species engineering specialty, interest and importance of human resource management is growing. But, not many studies on the operation ratio are being proceeded due to the difficulty of casting people on site and actual survey. Thus, this study proposes the work type-specific quantitative operation ratio through work type-specific operation ratio analysis of reinforced concrete construction which takes up an important part of construction work.

  • PDF

A study on the cracking of tunnel lining by measurement and numerical analysis (계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구)

  • Hwang, Hak;Jung, Hun-Chul;Kim, Yu-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

A Fundamental Study on Development of Arduino Wireless Sensor System for Prediction of Concrete Compressive Strength using Maturity (적산온도 기반 콘크리트의 압축강도 예측을 위한 무선 아두이노 센서 시스템 개발에 관한 기초 연구)

  • Kim, Han-Sol;Moon, Dong-Hwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.67-68
    • /
    • 2019
  • The mechanical and durability characteristics of concrete structures depend on the construction environment, material conditions, design conditions, and temperature and humidity environment after casting. However, wired communicati-on sensors which are mainly used in the field have many limitations in their usability and monitoring. In this study, all temperature and humidity data measured from embedded sensors are monitored via a wireless sensor network. Based on the measured temperature data, the predicted compressive strength of the concrete was compared with the actual compressive strength. As a result, The error between predicted strength and experimental strength has decreased over time.

  • PDF

comparative Study on confinement Steel Amount of RC Column Bent (철근콘크리트 교각 심부구속철근량의 비교연구)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

Connection Method of Composite Precast Concrete Columns Using Thread Rebar (나사형 철근을 사용한 합성 PC기둥의 접합방법)

  • Kim, Tae-Koo;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.14-15
    • /
    • 2013
  • Green Frame is precast concrete column-beam structure. There are three types on column connection. The coupler type which is one of the three, need to be improved because of unstability caused by pre-installation of column before casting the slab, and quality deterioration caused by lack of workspace. Therefore, in this study, new coupler connection type with thread rebar is suggested. The result of this study shall be used for the efficiency analysis of the new coupler connection.

  • PDF

Effect of Joint Reinforcement on Reinforced Concrete Pile by Centrifugal Casting (원심성형 철근콘크리트 말뚝 이음부의 보강 효과)

  • Joo, Sanghoon;Hwang, Hoonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.501-509
    • /
    • 2019
  • The construction of foundation piles for buildings and bridges is changing from pile driving to an injected precast pile method. The goal is to minimize environmental damage, noise pollution, and complaints from neighboring residents. However, it is necessary to develop economic piles that are optimized for precasting by a centrifugal method in terms of both the material and structural system. A reinforced joint method is proposed for reinforced concrete piles (RC piles) manufactured by centrifugal casting. A previous study concluded that the structural performance of the current joint system for RC piles could be improved by using a reinforced joint composed of extended circular band plates and studs. In this study, the structural performance of such a joint was validated experimentally by bending and shear strength measurements. The proposed joint reinforcement method showed adequate structural performance in terms of bending and shear strength. The overall load-deflection behavior is close to that of a structure without joints, so it is expected that the behavior and performance of the design can be reliably reflected in site structures.

The Exploration on Early Age Deformation of HPC by FBG Strain Sensor

  • Jang, Il-Young;Yun, Ying-Wei
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1057-1060
    • /
    • 2008
  • For high performance concrete, due to its low water cement ratio (water binder ratio) and addition of mineral admixtures, pretty high autogenous shrinkage and thermal deformation occur at very early age of casting (especially before hardening). This may lead to early age cracking of HPC structures, and then may influence the durability of HPC. This paper has monitored the early age properties of HPC successfully by embedded FBG strain sensor. The results showed that the deformation increased rapidly within the first day after HPC casting. And its value is up to $85{\mu}{\varepsilon}$, which is the 30% of two-month deformation ($280{\mu}{\varepsilon}$). Considering the durability and permeability of HPC, the first-day deformation is pretty high and can not be neglected. Also the superior capability of FBG sensors such as continuity, stability and multiplexed technique etc, has been demonstrated.

  • PDF

Fiber Orientation Factor on a Circular Cross-Section in Concrete Members (콘크리트 원형단면에서의 섬유분포계수)

  • Lee, Seong-Cheol;Oh, Jeong-Hwan;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In order to predict the post-cracking tensile behavior of fiber reinforced concrete, it is necessary to evaluate the fiber orientation factor which indicates the number of fibers bridging a crack. For investigation of fiber orientation factor on a circular cross-section, in this paper, cylindrical steel fiber reinforced concrete specimens were casted with the variables of concrete compressive strength, circular cross-section size, fiber type, and fiber volumetric ratio. The specimens were cut perpendicularly to the casting direction so that the fiber orientation factor could be evaluated through counting the number of fibers on the circular cross-section. From the test results, it was investigated that the fiber orientation factor on a circular cross-section was lower than 0.5 generally adopted, as fibers tended to be perpendicular to the casting direction. In addition, it was observed that the fiber orientation factor decreased with an increase of the number of fibers per unit cross-section area. For rational prediction of the fiber orientation factor on a circular section, a rigorous model and a simplified equation were derived through taking account of a possible fiber inclination angle considering the circular boundary surface. From the comparison of the measured data and the predicted values, it was found that the fiber orientation factor was well predicted by the proposed model. The test results and the proposed model can be useful for researches on structural behavior of steel fiber reinforced columns with a circular cross-section.