• Title/Summary/Keyword: concrete capacity design method

Search Result 363, Processing Time 0.022 seconds

Mix Design of High Performance Concrete (고성능콘크리트의 배합설계)

  • Jung Yong-Wook;Lee Seung-Han;Yun Yong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.73-76
    • /
    • 2005
  • This study aims to suggest a simple and convenient design for a mix proportion method for high performance concrete by determining the optimum fine aggregate ratio and minimum binder content based on the maximum density theory. The mix design method introduced in this study adopted the optimum fine aggregate ratio with a minimum void and binder content higher than the minimum binder content level. The research results reveal that the method helps to reduce trial and error in the mixing process and is a convenient way of producing high performance concrete with self filler ability. In an experiment based on the mix proportion method, when aggregate with the fine aggregation ratio of 41$\%$ was used, the minimum binder content of high performance concrete was 470kg/$m^{3}$ and maximum aggregate capacity was $0.657m^{3}/m^{3}$. In addition, in mixing high performance concrete, the optimal slump flow to meet filler ability was 65$\pm$5cm, V load flow speed ranged from 0.5 to 1.5.

  • PDF

Behavioral Characteristics and Energy Dissipation Capacity of Coupling Beams Subject to Cyclic Loads (커플링보의 주기거동특성 및 에너지소산능력)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.9-12
    • /
    • 2004
  • Coupling beams subject to cyclic loads exhibit different behavioral characteristics and energy dissipation capacity varying with re-bar layouts. In the present study, nonlinear analysis method was developed using analogous truss model. Using the numerical method, parametric studies were performed to investigate the behavioral characteristics and the energy dissipation mechanism of coupling beams with various re-bar layouts subject to cyclic loading. Based on the investigation, a simple and practical method for evaluating the energy dissipation capacity of coupling beams was developed and verified by experiments. The proposed method accurately predicted the dissipated energy during cyclic loading addressing design parameters such as re-bar layouts, re-bar ratio, and deformation. The proposed method can be easily applied to nonlinear static and dynamic methods for seismic analysis and design.

  • PDF

Minimum deformability design of high-strength concrete beams in non-seismic regions

  • Ho, J.C.M.;Zhou, K.J.H.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.445-463
    • /
    • 2011
  • In the design of reinforced concrete (RC) beams, apart from providing adequate strength, it is also necessary to provide a minimum deformability even for beams not located in seismic regions. In most RC design codes, this is achieved by restricting the maximum tension steel ratio or neutral axis depth. However, this empirical deemed-to-satisfy method, which was developed based on beams made of normal-strength concrete (NSC) and normal-strength steel (NSS), would not provide a consistent deformability to beams made of high-strength concrete (HSC) and/or high-strength steel (HSS). More critically, HSC beams would have much lower deformability than that provided previously to NSC beams. To ensure that a consistent deformability is provided to all RC beams, it is proposed herein to set an absolute minimum rotation capacity to all RC beams in the design. Based on this requirement, the respective maximum limits of tension steel ratio and neutral axis depth for different concrete and steel yield strengths are derived based on a formula developed by the authors. Finally for incorporation into design codes, simplified guidelines for designing RC beams having the proposed minimum deformability are developed.

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.

Experimental study on through-beam connection system for concrete filled steel tube column-RC beam

  • Tian, Chunyu;Xiao, Congzhen;Chen, Tao;Fu, Xueyi
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.187-201
    • /
    • 2014
  • A new through-beam connection system for a concrete filled steel tube column to RC beam is proposed. In this connection, there are openings on the steel tube while the reinforced concrete beams are continuous in the joint zone. The moment and shear force at the beam ends can be transferred to column by continuous rebar and concrete. The weakening of the axial load and shear bearing capacity due to the opening of the steel tube can be compensated by strengthening steel tube at joint zone. Using this connection, construction of the joint can be made more convenient since welding and hole drilling in situ can be avoided. Axial compression and reversed cyclic loading tests on specimens were carried out to evaluate performance of the new beam-column connection. Load-deflection performance, typical failure modes, stress and strain distributions, and the energy dissipation capacity were obtained. The experimental results showed that the new connection have good bearing capacity, superior ductility and energy dissipation capacity by effectively strengthen the steel tube at joint zone. According to the test and analysis results, some suggestions were proposed to design method of this new connection.

Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete

  • Zhang, Hongmei;Chen, Zhiyuan
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2021
  • Concrete cracking due to brittle tension strength significantly prevents fully utilization of the materials for "flexural-shear failure" type shear walls. Theoretical and experimental studies applying fiber reinforced concrete (FRC) have achieved fruitful results in improving the seismic performance of "flexural-shear failure" reinforced concrete shear walls. To come to an understanding of an optimal design strategy and find common performance prediction method for design methodology in terms to FRC shear walls, seismic performance on shear walls with PVA and steel FRC at edge columns and plastic region are compared in this study. The seismic behavior including damage mode, lateral bearing capacity, deformation capacity, and energy dissipation capacity are analyzed on different fiber reinforcing strategies. The experimental comparison realized that the lateral strength and deformation capacity are significantly improved for the shear walls with PVA and steel FRC in the plastic region and PVA FRC in the edge columns; PVA FRC improves both in tensile crack prevention and shear tolerance while steel FRC shows enhancement mainly in shear resistance. Moreover, the tensile strength of the FRC are suggested to be considered, and the steel bars in the tension edge reaches the ultimate strength for the confinement of the FRC in the yield and maximum lateral bearing capacity prediction comparing with the model specified in provisions.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.