• Title/Summary/Keyword: concrete capacity design

Search Result 1,070, Processing Time 0.025 seconds

Equations for Estimating Energy Dissipation Capacity of Flexure-Dominated RC Members (철근콘크리트 휨재에 대한 에너지 소산능력 산정식의 개발)

  • 엄태성;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.989-1000
    • /
    • 2002
  • As advanced earthquake design methods using nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and energy dissipation. In a recent study, a simplified method which can estimate accurately the energy dissipation capacity of flexure-dominated RC members subjected to repeated cyclic load was developed. Based on the previously developed method, in the present study, simple equations that can be used for calculating the energy dissipation capacity were derived and verified by the comparison with experimental results. Through parametric study using the proposed equations, effects of axial load, reinforcement ratio, rebar arrangement, md ductility on the dissipated energy were investigated. The proposed equations can accurately estimate the energy dissipation capacity compared with the existing empirical equations, and therefore they will be useful for the nonlinear static analysis/design methods.

Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.467-485
    • /
    • 2015
  • This paper presents a comprehensive work on determination of yield base shear coefficient and displacement ductility factor of three to eight story actual reinforced concrete buildings, instead of using generic frames. The building data is provided by a walkdown survey in different locations of the pilot areas. Very detailed three dimensional models of the selected buildings are generated by using the data provided in architectural and reinforcement projects. Capacity curves of the buildings are obtained from nonlinear static pushover analyses and each capacity curve is approximated with a bilinear curve. Characteristic points of capacity curve, the yield base shear capacity, the yield displacement and the ultimate displacement capacity, are determined. The calculated values of the yield base shear coefficients and the displacement ductility factors for directions into consideration are compared by those expected values given in different versions of Turkish Seismic Design Code. Although having sufficient lateral strength capacities, the deformation capacities of these typical mid-rise reinforced concrete buildings are found to be considerably low.

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.121-136
    • /
    • 2024
  • In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.

Performance Evaluation of Inelastic Rotation Capacity of Special Moment Frame Connections (보-기둥 접합부를 가진 철근 콘크리트 모멘트 골조의 비탄성 회전 능력에 대한 평가)

  • Lee, Ki-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • This study summarizes results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete moment frames. A total of 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-99 provisions. Then, the acceptance criteria, originally defined for steel moment frame connections in the AISC-97 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provided sufficient strength and are ductile up to a plastic rotation of $3\%$ without any major degradation in strength.

  • PDF

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

Seismic Capacity of a Reinforced Concrete Structure without Seismic Detailing and Implication to the Seismic Design in the Region of Moderate Seismicity (비내진상세 철근콘크리트 구조물의 내진성능 및 중약진지역 내진설계에의 적용)

  • 김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.305-312
    • /
    • 1999
  • A four-story reinforced concrete frame building model is designed for the gravity loads. only Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape moment and shear distribution are calculated. It is observed that the seismic capacity may not meet the design requirements in soft soil condition and may collapse in MCE. It is concluded that limited but adequate amount of ductility need be provided in the seismic design in low to moderate seismicity regions.

  • PDF

Design Method of Large-Scale Concrete-Steel Composite Drilled Shafts (대구경 합성강관말뚝 설계 기법에 관한 연구)

  • Choi, Kyu-Yong;Yang, Jong-Ho;Choi, Seok-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.299-302
    • /
    • 2005
  • Generally, steel-concrete composite structures are considered very useful and powerful to resist external axial and flexural load due to its elevated capacity originated from composite action. This usefulness of composite structures can be applied to the drilled shafts of marine bridges that require large-scale such as entire pile-column system. As the basic study of this application, several design codes are analyzed and compared in this research.

  • PDF

A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates

  • Wang, L.;Su, R.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.163-185
    • /
    • 2013
  • The use of post-compressed plates (PCP) to strengthen preloaded reinforced concrete (RC) columns is an innovative approach for alleviating the effects of stress-lagging between the original column and the additional steel plates. Experimental and theoretical studies on PCP-strengthened RC columns have been presented in our companion papers. The results have demonstrated the effectiveness of this technique for improving the strength, deformability and ductility of preloaded RC columns when subjected to axial or eccentric compression loading. An original and comprehensive design procedure is presented in this paper to aid engineers in designing this new type of PCP-strengthened RC column and to ensure proper strengthening details for desirable performance. The proposed design procedure consists of five parts: (1) the estimation of the ultimate load capacity of the strengthened column, (2) the design of the initial pre-camber displacement of the steel plate, (3) the design of the vertical spacing of the bolts, (4) the design of the bearing ends of the steel plates, and (5) the calculation of the tightening force of the bolts. A worked example of the design of a PCP-strengthened RC column is shown to demonstrate the application of the proposed design procedure.

A Study on Effect of Anchor Plate on Concrete Breakout Capacity and Elasticity-Based Analysis Model of Anchor Plate (앵커플레이트가 콘크리트 파괴 강도에 미치는 영향 및 탄성기반 해석 모델에 대한 연구)

  • Shin, Ji-Uk;You, Young-Chan;Choi, Ki-Seon;Kim, Ho-Ryong;Kim, Jun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.381-388
    • /
    • 2013
  • This study presents that effect of anchor plate on concrete breakout strength was evaluated. The addition of the anchor plate is to improve the concrete breakout capacity for a single anchor system in a thin-walled concrete panel (Insulated concrete sandwich wall panel). In this study, an elasticity-based simplified model was developed and used to predict effect on the anchor plate. Flexural stresses of the plate with respect to the concrete breakout strength obtained from CCD (Capacity Concrete Design) approach were compared with the test results. Through the test results, while the concrete breakout strength was improved due to increment of the width and thickness of the anchor plate, improvement of the strength was steadily declined. In addition, the It was observed that the analytical and experimental flexure of the anchor plate was comparatively in good agreement using the simplified elastic analysis model.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.