• 제목/요약/키워드: concrete bridge

검색결과 2,192건 처리시간 0.028초

대변위를 고려한 곡선 프리스트레스트 콘크리트 사장교의 비선형 해석 (Nonlinear Analysis of Curved Prestressed Concrete Cable-Stayed Bridge due to Large Deflection)

  • 이재석;최규천
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.341-344
    • /
    • 2006
  • A study for the nonlinear analysis of segmentally erected curved PSC(prestressed concrete) cable-stayed bridge considering the effects due to large deflections is presented. Various case studies regarding the effects of the material nonlinearities and the geometric nonlinearities on the behavior of segmentally erected curved PSC cable-stayed bridge are conducted. The numerical results on the bridge which has relatively low stress profile through the bridge deck section like the example herein show that the geometric nonlinearities has more significant effects on the structural behavior than the material nonlinearities.

  • PDF

원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가 (Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment)

  • 김태훈;김영진;강형택;신현목
    • 대한토목학회논문집
    • /
    • 제26권2A호
    • /
    • pp.351-361
    • /
    • 2006
  • 이 연구에서는 원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가를 위한 비선형 유한요소해석 기법을 제시하였다. 이 논문에서는 원형 철근콘크리트 교각의 이력거동의 예측에 근거한 손상지수를 제시하였다. 손상지수는 지진하중하의 원형 철근콘크리트 교각의 손상을 수치적으로 정량화하는 방법으로서 제안되었다. 제안한 해석기법을 실험된 철근콘크리트 교각에 적용하여 비교, 분석하였다. 제안된 해석기법은 조사된 실험체에 대하여 하중단계에 따라 내진성능을 정확하게 예측하였다.

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen;Hou Chang-ze;Gongxing Yan;M. Atif
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.417-428
    • /
    • 2024
  • Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

기상조건에 따른 손상 교량 바닥판의 상대유전율 변화 고찰 (Relative Permittivity of Damaged Concrete Bridge Deck According to the Weather Conditions : A Case Study)

  • 이지영;최재진
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.209-215
    • /
    • 2017
  • 지하투과레이더(GPR)를 이용하여 아스팔트 포장이 있는 교량 바닥판의 상태를 평가할 때, 현재는 포장면에 접한 콘크리트의 상대유전율이 12이상일 때를 손상위험이 높은 곳으로 판단하고 있다. 그러나 콘크리트의 상대유전율은 공극율과 수분율에 따라 변화하는 것으로 알려져 있다. 본 연구에서는 고속도로 상에 공용 중인 아스팔트 포장 교량 바닥판을 대상으로 다양한 시기에 걸쳐 GPR 조사를 실시하였으며 이로부터 손상평가 기준으로 활용되는 교량 바닥판 콘크리트의 상대유전율 변화에 대해 고찰을 실시하였다. 조사 결과, 손상이 발생되지 않은 경우 포장층 하면에 접한 바닥판 상면 콘크리트의 상대유전율은 보통 콘크리트의 상대유전율 범위로 정규분포에 가깝게 나타났다. 그러나, 열화 손상이 발생된 콘크리트 바닥판의 상대유전율은 조사가 이루어지는 시기와 기상조건의 영향을 받으며, 그 값은 우수의 유입 여부와 콘크리트의 손상 상태에 따라 변화할 가능성이 높은 것으로 나타났다. 콘크리트 교량 바닥판의 상태평가를 위해 GPR을 이용하는 경우, 그 조사는 우기 또는 비가 온 이후에 실시함으로써 손상범위를 폭넓게 확인하는 것이 가능하다고 판단된다.

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

콘크리트궤도 부설 교량의 단부 사용성 검토를 위한 매개변수 연구 (The Parameter Study of Serviceability Review of End Track on Railway Bridge installed Concrete Slab Track)

  • 성덕룡;김영하;박용걸;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.117-124
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. However, in case of railway bridge installed concrete slab track, the serviceability review of end deck should be performed for reducing the maintenance cost of track. The serviceability review of track contains that the compression force which is occurred on fastener of end bridge should be smaller than the compression force causing the deformation limit of elastic pad and the uplift force which is occurred on fastener of end abutment should be smaller than initial fastening force. Therefore, this study calculated the deflection and end rotation of the railway bridge according to the span length and stiffness of railway bridge and estimated the compression force and uplift force which are occurred on the track of end bridge using the finite element method. This study indicated the several diagrams that are contained the correlation between the behaviour of the track and the behaviour of the railway bridge. As a result, to reduce the end rotation of the railway bridge is very efficient to increase the height of railway deck.

  • PDF

하단힌지 강합성 라멘교의 구조적 거동에 대한 실험적 연구 (An Experimental Study on the Structural Behavior of Steel-Concrete Composite Rahmen Bridge with Hinged End Supports)

  • 최진우;장민준;천진욱;윤순종
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.195-205
    • /
    • 2015
  • 라멘교는 모든 부재의 접합부가 강절점으로 구성되어 있는 잘 알려진 교량으로, 교량받침이 불필요하고, 유지관리가 용이하며, 상부구조의 단면을 감소시킬 수 있고, 기타 구조형식에 비해 상대적으로 건설비가 적다는 점 등 많은 장점을 가지고 있기 때문에 다양한 현장에서 시공되고 있다. 또한 최근 경간을 증가시키기 위해 강합성 부재를 상부구조로 사용한 강합성 라멘교의 적용 사례가 증가하고 있다. 그러나 강합성 라멘교는 교량의 경간이 증가하여 부재력이 증가하고, 그에 따라 하부구조가 비경제적으로 설계, 시공되고 있다. 이 연구에서는 교대벽체와 기초 사이에 힌지구조를 적용하여 기초의 모멘트를 감소시킨 신형식 강합성 라멘교를 제안하고, 구조적 성능 및 힌지구조의 성능을 검증하기 위한 실험적 연구를 수행하였다.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Analytical study on free vertical and torsional vibrations of two- and three-pylon suspension bridges via d'Alembert's principle

  • Zhang, Wen-ming;Wang, Zhi-wei;Zhang, Hao-qing;Lu, Xiao-fan;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.293-310
    • /
    • 2020
  • This study derives the differential equations of free vertical bending and torsional vibrations for two- and three-pylon suspension bridges using d'Alembert's principle. The respective algorithms for natural vibration frequency and vibration mode are established through the separation of variables. In the case of the three-pylon suspension bridge, the effect of the along-bridge bending vibration of the middle pylon on the vertical bending vibration of the entire bridge is considered. The impact of torsional vibration of the middle pylon about the vertical axis on the torsional vibration of the entire bridge is also analyzed in detail. The feasibility of the proposed method is verified by two engineering examples. A comparative analysis of the results obtained via the proposed and more intricate finite element methods confirmed the former feasibility. Finally, the middle pylon stiffness effect on the vibration frequency of the three-pylon suspension bridge is discussed. It is found that the vibration frequencies of the first- and third-order vertical bending and torsional modes both increase with the middle pylon stiffness. However, the increase amplitudes of third-order bending and torsional modes are relatively small with the middle pylon stiffness increase. Moreover, the second-order bending and torsional frequencies do not change with the middle pylon stiffness.