• Title/Summary/Keyword: concrete, De-icing salts

Search Result 15, Processing Time 0.019 seconds

Prediction Model of Chloride Penetration in Concrete Bridge Deck Considering Environmental Effects (대기 환경조건을 고려한 콘크리트 교량 바닥판의 염소이온 침투 예측 모델)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Recently, the deterioration of reinforced concrete structures, primarily due to corrosion of steel reinforcement, has become a major concern. Chloride-induced deterioration is the most important deterioration phenomenon in reinforced concrete structures in harsh environments. For the realistic prediction of chloride penetration into concrete, a mathematical model was developed in which the effects of diffusion, chloride binding and convection due to water movement can be taken into account. The aim of this research was to reach a better understanding on the physical mechanisms underlying the deterioration process of reinforced concrete associated with chloride-induced corrosion and to propose a reliable method for estimating these effects. Chloride concentrations coming from de-icing salts are significantly influenced by the exposure conditions such as salt usage, ambient temperature and repeated wet-dry cycles.

Evaluation on the Properties of Modified-sulfur Concrete as a Basic Study for Development of Anti-corrosive Concrete (내부식성 콘크리트 개발을 위한 기초연구로서 개질유황 혼합 콘크리트의 물성 평가)

  • Park, Sang-Soon;Na, Ok-Jung
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Due to the increased construction of offshore concrete structures and the use of de-icing salts for the purpose of snow removal, the needs for the development of anti-corrosive concrete are increasing. To solve these problems, an evaluation of the mechanical and durability properties for concrete were conducted by mixing modified-sulfur as 0 %, 5 %, 10 %, 15 % cement weight ratio. Both strengths and the properties affecting durability such as water absorption coefficient, chloride ion permeability, accelerated carbonation resistance, rapid freezing and thawing, and chemical resistance were evaluated. All evaluations performed were according to the test specifications associated KS. The results indicate that mixing of modified-sulfur lowed chloride ion permeability and improved chemical resistance.

Scaling Resistance of Cement Concrete Incorporating Mineral Admixtures (광물질혼화재를 적용한 콘크리트의 스케일링 저항성 평가)

  • Lee, Seung-Tae;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • PURPOSES: The scaling of a concrete surface caused by the combined effects of frost and de-icing salts is one of the main reasons for the need to repair transportation infrastructures in cold-climate regions. This study describes the results of attempts to determine the scaling resistance of concrete incorporating mineral admixtures such as fly ash, GGBFS, and silica fume, and subjected to the actions of frost and salt. METHODS : Conventionally, to evaluate the fundamental properties of concrete, flexural and compressive strength measurements are regularly performed. Based on the ASTM C 672 standard, concrete is subjected to 2%, 4%, and 8% $CaCl_2$ salt solutions along with repeated sets of 50 freeze/thaw cycles, and the scaling resistance was evaluated based on the mass of the scale and a visual examination. RESULTS : It was observed that silica fume is very effective in enhancing the scaling resistance of concrete. Meanwhile, concrete incorporating GGBFS exhibited poor resistance to scaling, especially in the first ten freeze/thaw cycles. However, fly ash concrete generally exhibited the maximum amount of damage as a result of the frost-salt attack, regardless of the concentrations of the solutions. CONCLUSIONS: It can be concluded that the scaling resistance of concrete is highly dependent on the type of the mineral admixture used in the concrete. Therefore, to provide a durable concrete pavement for use in cold-climate regions, the selection of a suitable binder is essential.

Concrete bridge deck deterioration model using belief networks

  • Njardardottir, Hrodny;McCabe, Brenda;Thomas, Michael D.A.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.439-454
    • /
    • 2005
  • When deterioration of concrete is observed in a structure, it is highly desirable to determine the cause of such deterioration. Only by understanding the cause can an appropriate repair strategy be implemented to address both the cause and the symptom. In colder climates, bridge deck deterioration is often caused by chlorides from de-icing salts, which penetrate the concrete and depassivate the embedded reinforcement, causing corrosion. Bridge decks can also suffer from other deterioration mechanisms, such as alkali-silica reaction, freeze-thaw, and shrinkage. There is a need for a comprehensive and integrative system to help with the inspection and evaluation of concrete bridge deck deterioration before decisions are made on the best way to repair it. The purpose of this research was to develop a model to help with the diagnosis of concrete bridge deck deterioration that integrates the symptoms observed during an inspection, various deterioration mechanisms, and the probability of their occurrence given the available data. The model displays the diagnosis result as the probability that one of four deterioration mechanisms, namely shrinkage, corrosion of reinforcement, freeze-thaw and alkali-silica reaction, is at fault. Sensitivity analysis was performed to determine which probabilities in the model require refinement. Two case studies are included in this investigation.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.