• 제목/요약/키워드: conceptual structural design

검색결과 214건 처리시간 0.032초

10MW급 풍력발전용 원형강관 멀티기둥타워의 부재유용도 개념설계 (Member Utilization Concept Design for Hollow Circular Section Multi-column Tower Subjected to 10MW Level Wind Turbines)

  • 김경식;김미진
    • 한국강구조학회 논문집
    • /
    • 제29권3호
    • /
    • pp.205-215
    • /
    • 2017
  • 본 연구에서는 10MW급 풍력하중을 받는 멀티기둥 타워시스템에 원형강관 부재의 구조안전성 및 경제성을 함께 검토하는 방식으로 부재 유용도에 근거한 개념설계의 예를 보였다. 단일 실린더형 타워를 대체할 수 있는 멀티기둥타워 구조의 구성에 관한 기본적인 가정을 정립하였고, 그에 따라 제안된 구조물을 모델링하고 해석하여 부재력을 확인하였다. 산정된 부재강도와 작용하중을 근간으로 제안된 멀티기둥타워의 각 부재별로 축력, 전단, 휨, 비틂에 대한 유용도가 산정되었고, 풍력타워로서의 적합성이 평가하였다. 멀티기둥 풍력타워의 개념설계에 채택될 수 있는 수준의 유용도 범위에서 강관 치수, 세장비 및 수평재 단수 등의 설계 매개변수를 제안하였다.

요소제거법을 이용한 구조물 위상최적설계 (Structural Topology Optimization using Element Remove Method)

  • 임오강;이진식;김창식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.183-190
    • /
    • 2001
  • Topology optimization. has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes in many industrial parts. In recent years, topology optimization has become the focus of structural optimization design and has been researched and widely applied both in academy and industry. Traditional topology optimization has been using homogenization method and optimality criteria method. Homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time and additive checkerboard prevention algorithm is needed. In one way to solve this problem, element remove method is presented. Then, it is applied to many examples. From the results, it is verified that the time of convergence is very improved and optimal designed results is obtained very similar to the results of traditional topology using 8 nodes per element.

  • PDF

Conceptual design of light bascule bridge

  • Xu, Weiwei;Ding, Hanshan;Lu, Zhitao
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.381-390
    • /
    • 2008
  • This paper proposed a conceptual design of bascule bridge, which is a new kind of movable bridge with an aim of reducing the weight of superstructure. Compared with the traditional bascule bridge, the light bascule bridge chooses cable-stayed bridge with inclined pylon as its superstructure; therefore, the functions of balance-weight and structure will fuse into one. Otherwise, it adopts moving counterweight to adjust its center of gravity (CG) to open or close the bridge. In order to lighten the superstructure, it uses contact springs to auxiliary retract, and intelligent prestressing system (IPS) to control the main girder's deformation. Simultaneously the vibration control scheme of structure is discussed. Starting from establishing the mechanical model of bridge, this article tries to analyze the conditions that the design parameters of structure and attachments should satisfy to. After the design procedure was presented, an example was also adopted to explain the primary design process of this kind bridge.

구조 최적 설계기법을 이용한 ULSAB 개념의 자동차 도어 설계 (The Automotive Door Design with the ULSAB Concept Using Structural Optimization)

  • 신정규;송세일;이권희;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.187-194
    • /
    • 2000
  • Weight reduction for an automobile body is being sought for the fuel efficiency and the energy conservation. One way of the efforts is adopting Ultra Light Steel Auto Body (ULSAB) concept. The ULSAB concept can be used for the light weight of an automobile door with the tailor welded blank (TWB). A design process is defined for the TWB. The inner panel of door is designed by the TWB and optimization. The design starts from an existing component. At first, the hinge and inner reinforcements are removed. In the conceptual design stage, topology optimization is conducted to find the distribution of variable thicknesses. The number of parts and the welding lines are determined from the topology design. In the detailed design process, size optimization is carried out to find thickness while stiffness constraints are satisfied. The final parting lines are determined by shape optimization.

  • PDF

전투차량체계의 개념탐색을 위한 화력성능분석 (Fire Power Analysis for Concept Exploration of Combat Vehicle)

  • 임오강;최은호;류재봉
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.251-258
    • /
    • 2009
  • 개념설계단계에서 전투차량은 크게 화력성능, 기동성능과 체계의 물리적 특성으로 나누어진다. 본 연구에서는 전투차량체계를 구성하는 3가지 특성 중 화력성능의 최적화로 제한한다. 체계의 개념설계 단계에서 화력성능에 영향을 미치는 주요 인자로 파괴효과에 직접적인 영향을 주는 탄의 중량과 원거리 사격을 고려한 최대사거리를 분석대상으로 선정하였다. 최대 사거리 분석을 위하여 강내탄도와 강외탄도해석은 질량 집중 모델, Le Duc모델과 질점탄도모델을 사용하여 분석하였다. 실험계획법과 회귀분석으로 반응표면식을 구성하고 선정된 인자를 반응표면법으로 최적화하였다.

판매원 브랜드 동일시가 개념적 유창성, 서비스 만족도, 브랜드 평가에 미치는 영향 (Effects of Salesperson Brand Identification on Conceptual Fluency, Satisfaction, and Brand Evaluation)

  • 최순화
    • 유통과학연구
    • /
    • 제16권4호
    • /
    • pp.75-82
    • /
    • 2018
  • Purpose - As the role of salespersons in retail stores has expanded from selling products to sharing brand experiences with customers, the importance of research on the effects of salesperson-brand relationships has grown. The purpose of this research is to investigate the influences of salespersons' brand identification on conceptual fluency and customers' service and brand evaluations. It was supposed that salespersons' brand identification is affected by brand knowledge, which is a core dimension of internal branding. Research design, data, and methodology - The author developed a structural model in which salespersons' brand knowledge influences brand identification, hence customers' perception of salesperson-brand image congruence. And it is hypothesized that salesperson-brand image congruence influences conceptual fluency which affects customers' satisfaction and brand evaluation. Data were collected from five department stores in Seoul. Results - First, salespersons' brand knowledge was found to have a significant effect on brand identification. The more a salesperson knows about the affiliated brand, the higher her level of brand identification. Second, salespersons' brand identification influenced salesperson-brand image congruence. Third, salesperson-brand image congruence had a significant effect on brand conceptual fluency. Customers who perceive salesperson-brand image congruent are more likely to process information easily. Finally, conceptual fluency was found to be a significant determinant of store loyalty and brand value evaluation. Conclusions - The results of this study verify importance of salesperson's brand identification on customers' service and brand evaluations. To enhance salespersons' brand identification, retailers should emphasize the importance of internal branding and communication, especially by sharing brand vision, values, and identity with employees at customer contact points. Also, as brand conceptual fluency is a significant determinant of customer responses, retailers need to deliver consistent messages through various components of store environments, including salespersons' attitudes, appearances, and manners, as well as physical store design. With a deeper understanding of the effects of salesperson-brand relationship and brand conceptual fluency, retailers will be able to create more effective brand strategies to enhance their performances. Future studies should consider data from various retail types, such as discount stores, to generalize the findings.

Advances in the design of high-rise structures by the wind tunnel procedure: Conceptual framework

  • Simiu, Emil;Yeo, DongHun
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.489-503
    • /
    • 2015
  • This paper surveys and complements contributions by the National Institute of Standards and Technology to techniques ensuring that the wind tunnel procedure for the design of high-rise structures is based on sound methods and allows unambiguous inter-laboratory comparisons. Developments that enabled substantial advances in these techniques include: Instrumentation for simultaneously measuring pressures at multiple taps; time-domain analysis methods for estimating directional dynamic effects; creation of large simulated extreme directional wind speed data sets; non-parametric methods for estimating mean recurrence intervals (MRIs) of Demand-to-Capacity Indexes (DCIs); and member sizing based on peak DCIs with specified MRIs. To implement these advances changes are needed in the traditional division of tasks between wind and structural engineers. Wind engineers should provide large sets of directional wind speeds, pressure coefficient time series, and estimates of uncertainties in wind speeds and pressure coefficients. Structural engineers should perform the dynamic analyses, estimates of MRIs of wind effects, sensitivity studies, and iterative sizing of structural members. The procedure is transparent, eliminates guesswork inherent in frequency domain methods and due to the lack of pressure measurements, and enables structural engineers to be in full control of the structural design for wind.

반잠수식 시추선의 Shale Shaker Room 폭발 사고에 대한 위험도 기반 사고한계상태 평가 (Risk Based Accidental Limit State Evaluation on Explosion Accident at Shale Shaker Room of Semi-Submersible Drilling Rig)

  • 유승재;김한별;박진후;원선일;최병기
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.69-73
    • /
    • 2015
  • An evaluation of the accidental limit state (ALS) for design of a semi-submersible drilling rig is one of the essential design requirements as well as ultimate limit state (ULS) and fatigue limit state (FLS). This paper describes the ALS evaluation on the explosion accident at shale shaker room of semi-submersible drilling rig. There are three steps for the ALS evaluation such as structural analysis at concept design, risk based safety design and structural analysis at detailed design. For the ALS evaluation at concept design, conceptual explosion overpressure from the Rule guided by the classification society was used in the structural analysis that was carried out using LS-DYNA. To set up the design accidental load (DAL), explosion analysis was carried out using FLACS taking safety barriers into consideration. Then, the structural analysis was carried out applying DAL for the ALS evaluation at detailed design. Through the ALS evaluation on the explosion at shale shaker room, the importance of the risk based safety design was described.

  • PDF

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

강골조 설계를 위한 Gradient Projection 알고리즘의 응용 (Application of Gradient Projection Algorithm for the Design of Steel Frames)

  • 홍성목;이한선
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.99-106
    • /
    • 1995
  • 구조물의 최적설계에 대한 일반적인 개념이 제시되며 Gradient Projection법과 설계민감도 해석을 사용한 최적화 알고리즘이 논의된다. 6층 평면 철골 구조물의 최소무게설계의 예를 통해 이 알고리즘의 적용을 예시한다. 시스템 전체의 비용분석뿐만 아니라 임계 비용 및 설계민감도 해석과 같은 이 알고리즘의 장점에 관하여 설명한다.

  • PDF