• Title/Summary/Keyword: concave slope

Search Result 52, Processing Time 0.023 seconds

Changes in Distribution of Debris Slopes and Vegetation Characteristics in Mudeungsan National Park (무등산국립공원의 암설사면 분포변화 및 식생 특성)

  • Seok-Gon Park;Dong-Hyo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • We analyzed the distribution area of debris slopes in Mudeungsan (Mt. Mudeung) National Park by comparing aerial photos of the past (1966) and the present (2017) and identified the vegetation characteristics that affect the change in the area of the debris slopes by investigating the vegetation status of the debris slopes and the surrounding areas. The area of debris slopes in Mt. Mudeung appears to have been reduced to a quarter of what it used to be. Debris slopes here have decreased at an average rate of 2.3 ha/yr over 51 years by vegetation covers. Notably, most of the small-area debris slopes in the low-inclination slopes disappeared due to active vegetation coverage. However, there are still west-facing, south-west-facing, south-facing, and large-area debris slopes remaining because the sun's radiant heat rapidly raises the surface temperature of rock blocks and dries moisture, making tree growth unfavorable. Because of these locational characteristics, the small-scale vegetation in the middle of Deoksan Stony Slope, which is the broadest area, showed distinct characteristics from the adjacent forest areas. Sunny places and tree species with excellent drying resistance were observed frequently in Deoksan Stony Slope. However, tree species with high hygropreference that grow well in valleys with good soil conditions also prevailed. In some of these places, the soil layer has been well developed due to the accumulation of fine materials and organic matter between the crevices of the rock blocks, which is likely to have provided favorable conditions for such tree species to settle and grow. At the top of Mt. Mudeung, on the other hand, the forest covered the debris slopes, where Mongolian oaks (Quercus mongolica) and royal azaleas (Rhododendron schlippenbachii), which typically grow in the highlands, prevailed. This area was considered favorable for the development of vegetation for the highlands because the density of rock blocks was lower than in Deoksan Stony Slope, and the soil was exposed. Moreover, ash trees (Fraxinus rhynchophylla) and Korean maple trees (Acer pseudosieboldianum) that commonly appear in the valley areas were dominant here. It is probably due to the increased moisture content in the soil, which resulted from creating a depressive landform with a concave shape that is easy to collect rainwater as rock blocks in some areas fell and piled up in the lower region. In conclusion, the area, density of the rock blocks, and distribution pattern of rock block slopes would have affected the vegetation development and species composition in the debris slope landform.

Analysis on the Characteristics of the Landslide in Maeri (II) - With a Special Reference on Cause of Landslide - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (II) - 발생원인(發生原因)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.243-251
    • /
    • 2005
  • This study was carried out to evaluate precipitation, geological and topographical factors from the landslide area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. The landslide was affected by geo-topographical factors. Talus which is infiltrated easily by runoff was widely distributed in the landslide area. Concave areas on back- and toe-slope were built up colluvial materials and weathered soils. The colluvial materials were consisted of less weathered pebbles and stones (diameter: 10~100 cm) which are easily infiltrated during rainfall events. Also the landslide was mainly affected by an ascending of ground water table which is low in summit and high in toe-slope due to geo-topographical characteristics of the landslide area. The most important reason of the landslide was a lacking of drainage system of ground water despite the high infiltration rates of ground water in talus area during rainfall events.

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm (탈착 등온식을 이용한 토양 중 인산 완충력 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.

Crystal Growth of $Y_3Al_5O_{12}$ and Nd : $Y_3Al_5O_{12}$ by Czochralski. Technique (융액인상법에 의한 $Y_3Al_5O_{12}$및 Nd : $Y_3Al_5O_{12}$ 단결정육성)

  • Yu, Yeong-Mun;Lee, Yeong-Guk;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.51-66
    • /
    • 1994
  • Y3Al5O2 and Nd: Y3Al5012 single crystals were grown by Czochralskl technique. The effectt of pulling rate rotation rate, and doping level of Nd3+ ion on the crystal quality were studied Various types of defects were analysed by photo-elastic effect and chemical etching method Finally, spectroscopic and laser poputies of grown crystal were measured. Optirmum pulling rate for good quality was dependant on the doping level of Nd3+ ion. It was found that the suitable pulling rates for pure Y3Al5O12 for 3.0∼3.5 a/o Nd3+ ion doped Y3Al5012 and for more than 40 a/o Nd3+ ion doped Y3Al5012 were 2∼4mm/hr, 0.6∼0.5mm/hr, and less than 0.4mm/hr respectively. Solid-liquid interface was convex at the rotation rate of 27∼60rpm, and concave at the rotation rate of 80∼100rpm. Growth axis was confired to <111> direction and lattice parameter was measured to 12.017A. Core (211) facets,striations, inclusions of metal particles, dislocations and optical inhonngeneities were detected. Four level laser transition of Nd3+ion in YIAls012 single crystal were identified by the spectroscopic measurements. Laser rod with tam diameter and 63mm length was fabricated from grown Nd3+ Y3Al5012 sin91e crystals. 1.8lJ of lasing threshould and 0.49% of soope efficiency were measured by the Pulsed laser action.

  • PDF

Age-related Changes in Plasma Leptin from Early Growing to Late Finishing Stages of Castrated Holstein Steers: Utilizing Multi-species Leptin RIA

  • Vega, R.A.;Lee, H.G.;Kuwayama, H.;Matsunaga, N.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.725-731
    • /
    • 2002
  • This experiment was performed to understand the changes in plasma leptin in association with plasma IGF-1, body weight and ADG from early growing to late finishing stages of Holstein steers. Blood collection was performed by arterial vein puncture at selected monthly ages of 1 (54 kg), 2.6 (103 kg), 7.2 (205 kg), 13.5 (314 kg), 16.9 (414 kg), 22.2 (550 kg), 24.9 (626 kg) and 27.4 months (695 kg). The blood was analyzed for leptin using the multi-species leptin RIA with recombinant bovine leptin (rbleptin) as standard, plasma IGF-1 was also measured using RIA. Against the standard rbleptin, the multi-species Leptin RIA system's sensitivity, cross reactivity, slope and recovery of 41.0 ng/ml rbleptin in plasma were 4.9 ng/ml, 11.22%, -1.396 and 97.8%, respectively. Plasma leptin measured were more than 5.0 ng/ml, which enable multi-species RIA system to investigate plasma leptin in normal growing steers. Body weight resulted to a highly significant second-degree polynomial relationship with plasma leptin (q=0.54, p<0.0001) and plasma IGF-1 (q=0.44, p<0.0001) from 1 to 27.4 monthly ages. However, the second-degree polynomial curve of plasma leptin and IGF-1 differs showing a concave and convex curvilinear relationship, respectively. ADG was not significantly associated to plasma leptin (r=0.06, p>0.05) and plasma IGF=1 (r=0.06, p>0.05) from 1 to 27.4 monthly ages. Low coefficient, but significant associated increase of plasma leptin and IGF-1 (r=0.12, p<0.008) from 1 to 27.4 months was observed. The uncoordinated increases of plasma IGF-1 at growing and plasma leptin at fattening period, may indicate (1) indirect involvement of endogenous IGF-1 on leptin secretion, and (2) IGF-1 level may signify lean and bone accretion while plasma leptin may mirror body fatness across the monthly ages of Holstein steers.

A Study on the Boulder Stream of Granitoid in Korea (한국 화강암질암류 산지에서 발달하는 암괴류에 관한 연구)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.71-82
    • /
    • 2000
  • The purpose of this paper is to clarify geomorphic features and development on the boulder stream of granitoid in Korea. Considering the purpose and the method of this paper, three boulder streams are selected : Biseulsan(Mt. Biseul) boulder stream (Daegu city), Maneosan (Mt. Maneo) boulder stream(Gyeongnam province), Geumjeongsan(Mt. Geumjeong) boulder stream (Busan city). The boulder streams mentioned above are bigger in scale and more typical in shape than any other ones in the Korean Peninsula. The main results are summarized as follows. 1. The following are the main features of the boulder streams morphology : the mean gradient is $3{\sim}25^{\circ}$, the longer axes of the component boulders within the deposits averaged about 2m in length, the shapes of the component boulders may be both subangular and subrounded features. 2. The formation of the component boulders is associated with deep weathering of granitoid under warm humid conditions, and the downward movement of boulders occurred by solifluction and frost creep under periglacial conditions. 3. The geomorphic development stage of the boulder streams may be classified into four stages. These boulder streams come under fossil landform stage, the 4th stage ; evidence provided by lichens and weathering features indicate inactive or fossil landform. 4. In generally, boulder streams are well developed on shallow valley floors.

  • PDF

Molecular Theory of Plastic Deformation (Ⅲ)$^*$

  • Kim, Jae-Hyun;Ree, Tai-Kyue;Kim, Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • (1) The flow data of f (stress) and ${\dot{s}$ (strain rate) for Fe and Ti alloys were plotted in the form of f vs. -ln ${\dot{s}$ by using the literature values. (2) The plot showed two distinct patterns A and B; Pattern A is a straight line with a negative slope, and Pattern B is a curve of concave upward. (3) According to Kim and Ree's generalized theory of plastic deformation, pattern A & B belong to Case 1 and 2, respectively; in Case 1, only one kind of flow units acts in the deformation, and in Case 2, two kinds flow units act, and stress is expressed by $f={X_1f_1}+{X_2f_2}$where $f_1\;and\;f_2$ are the stresses acting on the flow units of kind 1 and 2, respectively, and $X_1,\;X_2$ are the fractions of the surface area occupied by the two kinds of flow units; $f_j=(1/{\alpha}_j) sinh^{-1}\;{\beta}_j{{\dot{s}}\;(j=1\;or\;2)$, where $1/{\alpha}_j\;and\;{\beta}_j$ are proportional to the shear modulus and relaxation time, respectively. (4) We found that grain-boundary flow units only act in the deformation of Fe and Ti alloys whereas dislocation flow units do not show any appreciable contribution. (5) The deformations of Fe and Ti alloys belong generally to pattern A (Case 1) and B (Case 2), respectively. (6) By applying the equations, f=$(1/{\alpha}_{g1}) sinh^-1({\beta}_{g1}{\dot{s}}$) and $f=(X_{g1}/{\alpha}_{g1})sinh^{-1}({\beta}_{g1}{\dot{s}})+ (X_{g2}/{\alpha}_{g2})\;shih^{-1}({\beta}_{g2}{\dot{s}})$ to the flow data of Fe and Ti alloys, the parametric values of $x_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gs}(j=1\;or\;2)$ were determined, here the subscript g signifies a grain-boundary flow unit. (7) From the values of ($({\beta}_gj)^{-1}$) at different temperatures, the activation enthalpy ${\Delta}H_{gj}^{\neq}$ of deformation due to flow unit gj was determined, ($({\beta}_gj)^{-1}$) being proportional to , the jumping frequency (the rate constant) of flow unit gj. The ${\Delta}H_{gj}\;^{\neq}$ agreed very well with ${\Delta}H_{gj}\;^{\neq}$ (self-diff) of the element j whose diffusion in the sample is a critical step for the deformation as proposed by Kim-Ree's theory (Refer to Tables 3 and 4). (8) The fact, ${\Delta}H_{gj}\;^{\neq}={\Delta}H_{j}\;^{\neq}$ (self-diff), justifies the Kim-Ree theory and their method for determining activation enthalpies for deformation. (9) A linear relation between ${\beta}^{-1}$ and carbon content [C] in hot-rolled steel was observed, i.e., In ${\beta}^{-1}$ = -50.2 [C] - 40.3. This equation explains very well the experimental facts observed with regard to the deformation of hot-rolled steel..

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Analysis of Land Creep in Ulju, South Korea (울주에서 발생한 땅밀림 특성)

  • Jae Hyeon Park;Sang Hyeon Lee;Han Byeol Kang;Hyun Kim;Eun Seok Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.14-30
    • /
    • 2024
  • This study characterized areas at risk of land creep by focusing on a site that has undergone this phenomenon in Ulju-gun, South Korea. Land creep in the area of interest was catalyzed by road expansion work conducted in 2022. The site was examined on the basis of its geological features, topography, effective soil depth, soil hardness, electrical resistivity, and subsurface profile. It consists of a slope covered with sparse vegetation and a concave top that retains rainwater during rainfall. Compositionally, land creep affected the shale, sandstone, and conglomerate formations on the site, which had little silt and more sand and clay compared with areas that were unaffected by land creep. An electrical resistivity survey enabled us to detect a groundwater zone at the site, which explains the softness of the soil. Finally, the effective soil depth at the land creep-affected area was 30.4 cm on average, indicating deep colluvial deposits. In contrast, unaffected sites had an effective soil depth of 24.7 cm on average. These results should facilitate the creation of systems for monitoring and preemptively responding to land creep, significantly mitigating the socioeconomic losses associated with this phenomenon.

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF