Jang Eun-Hye;Lee Ji-Hye;Lee Sang-Tae;Kim Wuon-Shik
Science of Emotion and Sensibility
/
v.8
no.1
/
pp.47-54
/
2005
This study is aimed to inspect how the different sensitivities in Behavioral activation system(BAS) and behavioral inhibition system(BIS) modulate on the properties of physiological responses stimulated by positive or negative affective sound. We measured the electroencephalogram(EEG) and electrocardiogram (ECG) of 32 students, consisted of four groups depending on the BAS and BIS sensitivities, during listening to meditation music or noise. The EEG was recorded at Fpl and Fp2 sites and Power spectral density(PSD) of HRV was derived from the ECG, and the power of HRV was calculated for 3 major frequency ranges(low frequency[LF], medium frequency and high frequency[HF]). After listening to music or noise, subjects reported the affect induced by the sound. For EEG, the power in the alpha band at Fp2, especially in the alpha-2 band(9.0-11.0 Hz) increased during the subjects listening to music, while the power at Fpl increased during noise. During listening to meditation music, there is a tendency that the left-sided activation in prefrontal cortex(PFC) is positively correlated with the difference of BAS(Z)-BIS(Z). During listening to noise, there is a tendency that the right-sided activation in PFC is dominant in case any of the sensitivity of BAS or BIS is high. For HRV, we found that the index of MF/(LF+HF), during listening to music, was higher significantly in the individuals with a low BIS but high BAS than in the individuals with a low sensitivity both BIS and BAS individuals. With high BIS, regardless of the BAS sensitivity, the difference of this index values was not significant. From these results we suggest that the physiological responses of different individuals in BAS and BIS react differently under the same emotionally provocative challenge.
The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.
Frequent pattern mining, which is one of the major areas actively studied in data mining, is a method for extracting useful pattern information hidden from large data sets or databases. Moreover, frequent pattern mining approaches have been actively employed in a variety of application fields because the results obtained from them can allow us to analyze various, important characteristics within databases more easily and automatically. However, traditional frequent pattern mining methods, which simply extract all of the possible frequent patterns such that each of their support values is not smaller than a user-given minimum support threshold, have the following problems. First, traditional approaches have to generate a numerous number of patterns according to the features of a given database and the degree of threshold settings, and the number can also increase in geometrical progression. In addition, such works also cause waste of runtime and memory resources. Furthermore, the pattern results excessively generated from the methods also lead to troubles of pattern analysis for the mining results. In order to solve such issues of previous traditional frequent pattern mining approaches, the concept of representative pattern mining and its various related works have been proposed. In contrast to the traditional ones that find all the possible frequent patterns from databases, representative pattern mining approaches selectively extract a smaller number of patterns that represent general frequent patterns. In this paper, we describe details and characteristics of pattern condensing techniques that consider the maximality or closure property of generated frequent patterns, and conduct comparison and analysis for the techniques. Given a frequent pattern, satisfying the maximality for the pattern signifies that all of the possible super sets of the pattern must have smaller support values than a user-specific minimum support threshold; meanwhile, satisfying the closure property for the pattern means that there is no superset of which the support is equal to that of the pattern with respect to all the possible super sets. By mining maximal frequent patterns or closed frequent ones, we can achieve effective pattern compression and also perform mining operations with much smaller time and space resources. In addition, compressed patterns can be converted into the original frequent pattern forms again if necessary; especially, the closed frequent pattern notation has the ability to convert representative patterns into the original ones again without any information loss. That is, we can obtain a complete set of original frequent patterns from closed frequent ones. Although the maximal frequent pattern notation does not guarantee a complete recovery rate in the process of pattern conversion, it has an advantage that can extract a smaller number of representative patterns more quickly compared to the closed frequent pattern notation. In this paper, we show the performance results and characteristics of the aforementioned techniques in terms of pattern generation, runtime, and memory usage by conducting performance evaluation with respect to various real data sets collected from the real world. For more exact comparison, we also employ the algorithms implementing these techniques on the same platform and Implementation level.
As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.
According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.
Considerable research efforts are being directed towards analyzing unstructured data such as text files and log files using commercial and noncommercial analytical tools. In particular, researchers are trying to extract meaningful knowledge through text mining in not only business but also many other areas such as politics, economics, and cultural studies. For instance, several studies have examined national pending issues by analyzing large volumes of text on various social issues. However, it is difficult to provide successful information services that can identify R&D documents on specific national pending issues. While users may specify certain keywords relating to national pending issues, they usually fail to retrieve appropriate R&D information primarily due to discrepancies between these terms and the corresponding terms actually used in the R&D documents. Thus, we need an intermediate logic to overcome these discrepancies, also to identify and package appropriate R&D information on specific national pending issues. To address this requirement, three methodologies are proposed in this study-a hybrid methodology for extracting and integrating keywords pertaining to national pending issues, a methodology for packaging R&D information that corresponds to national pending issues, and a methodology for constructing an associative issue network based on relevant R&D information. Data analysis techniques such as text mining, social network analysis, and association rules mining are utilized for establishing these methodologies. As the experiment result, the keyword enhancement rate by the proposed integration methodology reveals to be about 42.8%. For the second objective, three key analyses were conducted and a number of association rules between national pending issue keywords and R&D keywords were derived. The experiment regarding to the third objective, which is issue clustering based on R&D keywords is still in progress and expected to give tangible results in the future.
Seo, Kyoung-Jin;Hwang, Jin-Ha;Jeung, Jang-Hun;Kim, Ki-Youn
Journal of Internet Computing and Services
/
v.15
no.4
/
pp.91-102
/
2014
The purpose of this research is to perform the consumer typological study of integrated emerging digital advertisement, where IT and advertisement industry were fused, and to propose the theoretical definition about consumer characteristic which is in need for collection of related market subdivision strategy in perspective of business marketing. For this, the Q methodology, the 'subjectivity' research of qualitative perspective, which discovers new theory by interpreting subjective system of thinking, preference, opinion, and recognition of inner side of respondents, was applied and analyzed. Compared to previous quantitative research that pursues hypothesis verification, this Q methodology is not dependent on operational definition proposed by researcher but pursues for analytic study completely reflecting objective testimony of respondents. For this reason, Q study analyzes in-depth the actual consumer type, which can be found at the initial market formation stage of new service, therefore this study is applicable for theorizing the consumer character as a mean of advanced research. This study extracted thirty 'IT integrated digital advertisement type (Q sample)' from thorough literature research and interviews, and eventually discovered a total four consumer types from analyzing each Q sorting research data of 40 respondents (P sample). Moreover, by interpreting subdivided intrinsic characteristic of each group, the four types were named as 'multi-channel digital advertisement pursuit type', 'emotional advertisement pursuit type', 'new media advertisement pursuit type', and Web 2.0 advertisement pursuit type'. The analysis result of this study is being expected for its value of usage as advanced research of academic and industrial research with the emerging digital advertisement industry as a subject, and as basic research in the field of R&D, Marketing program and the field of designing the advertisement creative strategy and related policy.
Infectious diseases have long plagued mankind, and predicting and preventing them has been a big challenge for mankind. For this reasen, various studies have been conducted so far to predict infectious diseases. Most of the early studies relied on epidemiological data from the Centers for Disease Control and Prevention (CDC), and the problem was that the data provided by the CDC was updated only once a week, making it difficult to predict the number of real-time disease outbreaks. However, with the emergence of various Internet media due to the recent development of IT technology, studies have been conducted to predict the occurrence of infectious diseases through web data, and most of the studies we have researched have been using single Web data to predict diseases. However, disease forecasting through a single Web data has the disadvantage of having difficulty collecting large amounts of learning data and making accurate predictions through models for recent outbreaks such as "COVID-19". Thus, we would like to demonstrate through experiments that models that use multiple Web data to predict the occurrence of infectious diseases through LSTM models are more accurate than those that use single Web data and suggest models suitable for predicting infectious diseases. In this experiment, we predicted the occurrence of "Malaria" and "Epidemic-parotitis" using a single web data model and the model we propose. A total of 104 weeks of NEWS, SNS, and search query data were collected, of which 75 weeks were used as learning data and 29 weeks were used as verification data. In the experiment we predicted verification data using our proposed model and single web data, Pearson correlation coefficient for the predicted results of our proposed model showed the highest similarity at 0.94, 0.86, and RMSE was also the lowest at 0.19, 0.07.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.12C
/
pp.1288-1298
/
2002
To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.
The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.