• Title/Summary/Keyword: computer vision technology

Search Result 685, Processing Time 0.025 seconds

A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model (웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구)

  • Hyun-Cheol Jang;Hyungkuk Jang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.

Trends in Biomimetic Vision Sensor Technology (생체모방 시각센서 기술동향)

  • Lee, Tae-Jae;Park, Yun-Jae;Koo, Kyo-In;Seo, Jong-Mo;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1178-1184
    • /
    • 2015
  • In conventional robotics, charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) cameras have been utilized for acquiring vision information. These devices have problems, such as narrow optic angles and inefficiencies in visual information processing. Recently, biomimetic vision sensors for robotic applications have been receiving much attention. These sensors are more efficient than conventional vision sensors in terms of the optic angle, power consumption, dynamic range, and redundancy suppression. This paper presents recent research trends on biomimetic vision sensors and discusses future directions.

Computer Vision Platform Design with MEAN Stack Basis (MEAN Stack 기반의 컴퓨터 비전 플랫폼 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yun, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.

Text-To-Vision Player - Converting Text to Vision Based on TVML Technology -

  • Hayashi, Masaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.799-802
    • /
    • 2009
  • We have been studying the next generation of video creation solution based on TVML (TV program Making Language) technology. TVML is a well-known scripting language for computer animation and a TVML Player interprets the script to create video content using real-time 3DCG and synthesized voices. TVML has a long history proposed back in 1996 by NHK, however, the only available Player has been the one made by NHK for years. We have developed a new TVML Player from scratch and named it T2V (Text-To-Vision) Player. Due to the development from scratch, the code is compact, light and fast, and extendable and portable. Moreover, the new T2V Player performs not only a playback of TVML script but also a Text-To-Vision conversion from input written in XML format or just a mere plane text to videos by using 'Text-filter' that can be added as a plug-in of the Player. We plan to make it public as freeware from early 2009 in order to stimulate User-Generated-Content and a various kinds of services running on the Internet and media industry. We think that our T2V Player would be a key technology for upcoming new movement.

  • PDF

Study of Intelligent Vision Sensor for the Robotic Laser Welding

  • Kim, Chang-Hyun;Choi, Tae-Yong;Lee, Ju-Jang;Suh, Jeong;Park, Kyoung-Taik;Kang, Hee-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • The intelligent sensory system is required to ensure the accurate welding performance. This paper describes the development of an intelligent vision sensor for the robotic laser welding. The sensor system includes a PC based vision camera and a stripe-type laser diode. A set of robust image processing algorithms are implemented. The laser-stripe sensor can measure the profile of the welding object and obtain the seam line. Moreover, the working distance of the sensor can be changed and other configuration is adjusted accordingly. The robot, the seam tracking system, and CW Nd:YAG laser are used for the laser welding robot system. The simple and efficient control scheme of the whole system is also presented. The profile measurement and the seam tracking experiments were carried out to validate the operation of the system.

Measuring the volume of powder by vision

  • SeijiIshikawa;ShigeruHarada;HiroyukiYoshinaga;KiyoshiKato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.776-779
    • /
    • 1987
  • This paper describes a technique for measuring the volume of a pile of powder in a visual way. The volume of a fragile object whose shape is easily transformed by a slight touch of another object must be measured without any contact with it. This can be achieved by applying a three-dimensional shape reconstruction technique employed in computer vision. We have developed a measurement system that finds the volume of a pile of powder by employing a range finder, and performed an experiment of determining the volume of PVC powder piled on a table. The result of the experiment was satisfactory.

  • PDF

Trends in Low-Power On-Device Vision SW Framework Technology (저전력 온디바이스 비전 SW 프레임워크 기술 동향)

  • Lee, M.S.;Bae, S.Y.;Kim, J.S.;Seok, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.56-64
    • /
    • 2021
  • Many computer vision algorithms are computationally expensive and require a lot of computing resources. Recently, owing to machine learning technology and high-performance embedded systems, vision processing applications, such as object detection, face recognition, and visual inspection, are widely used. However, on-devices need to use their resources to handle powerful vision works with low power consumption in heterogeneous environments. Consequently, global manufacturers are trying to lock many developers into their ecosystem, providing integrated low-power chips and dedicated vision libraries. Khronos Group-an international standard organization-has released the OpenVX standard for high-performance/low-power vision processing in heterogeneous on-device systems. This paper describes vision libraries for the embedded systems and presents the OpenVX standard along with related trends for on-device vision system.

Auto Parts Visual Inspection in Severe Changes in the Lighting Environment (조명의 변화가 심한 환경에서 자동차 부품 유무 비전검사 방법)

  • Kim, Giseok;Park, Yo Han;Park, Jong-Seop;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1109-1114
    • /
    • 2015
  • This paper presents an improved learning-based visual inspection method for auto parts inspection in severe lighting changes. Automobile sunroof frames are produced automatically by robots in most production lines. In the sunroof frame manufacturing process, there is a quality problem with some parts such as volts are missed. Instead of manual sampling inspection using some mechanical jig instruments, a learning-based machine vision system was proposed in the previous research[1]. But, in applying the actual sunroof frame production process, the inspection accuracy of the proposed vision system is much lowered because of severe illumination changes. In order to overcome this capricious environment, some selective feature vectors and cascade classifiers are used for each auto parts. And we are able to improve the inspection accuracy through the re-learning concept for the misclassified data. The effectiveness of the proposed visual inspection method is verified through sufficient experiments in a real sunroof production line.

Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction (효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술)

  • Park, Dongkeon;Kang, Kyeong-Min;Bae, Jin-Woo;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

Linear System Depth Detection using Retro Reflector for Automatic Vision Inspection System (자동 표면 결함검사 시스템에서 Retro 광학계를 이용한 3D 깊이정보 측정방법)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.77-80
    • /
    • 2022
  • Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. It has been populated because of the accuracy and consistency in terms of QC (Quality Control) of inspection processes. Also, it is important to predict the performance of an AVI to meet customer's specification in advance. AVI are usually suffered from false negative and positives. It can be overcome by providing extra information such as 3D depth information. Stereo vision processing has been popular for depth extraction of the 3D images from 2D images. However, stereo vision methods usually take long time to process. In this paper, retro optical system using reflectors is proposed and experimented to overcome the problem. The optical system extracts the depth without special SW processes. The vision sensor and optical components such as illumination and depth detecting module are integrated as a unit. The depth information can be extracted on real-time basis and utilized and can improve the performance of an AVI system.