• Title/Summary/Keyword: computer utilization

Search Result 1,347, Processing Time 0.023 seconds

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

A Study on the Improvement of Computing Thinking Education through the Analysis of the Perception of SW Education Learners (SW 교육 학습자의 인식 분석을 통한 컴퓨팅 사고력 교육 개선 방안에 관한 연구)

  • ChwaCheol Shin;YoungTae Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.3
    • /
    • pp.195-202
    • /
    • 2023
  • This study analyzes the results of a survey based on classes conducted in the field to understand the educational needs of learners, and reflects the elements necessary for SW education. In this study, various experimental elements according to learning motivation and learning achievement were constructed and designed through previous studies. As a survey applied to this study, experimental elements in three categories: Faculty Competences(FC), Learner Competences(LC), and Educational Conditions(EC) were analyzed by primary area and secondary major, respectively. As a result of analyzing CT-based SW education by area, the development of educational materials, understanding of lectures, and teaching methods showed high satisfaction, while communication with students, difficulty of lectures, and the number of students were relatively low. The results of the analysis by major were found to be more difficult and less interesting in the humanities than in the engineering field. In this study, Based on these statistical results proposes the need for non-major SW education to improve into an interesting curriculum for effective liberal arts education in the future in terms of enhancing learners' problem-solving skills.

Analysis and Orange Utilization of Training Data and Basic Artificial Neural Network Development Results of Non-majors (비전공자 학부생의 훈련데이터와 기초 인공신경망 개발 결과 분석 및 Orange 활용)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Through artificial neural network education using spreadsheets, non-major undergraduate students can understand the operation principle of artificial neural networks and develop their own artificial neural network software. Here, training of the operation principle of artificial neural networks starts with the generation of training data and the assignment of correct answer labels. Then, the output value calculated from the firing and activation function of the artificial neuron, the parameters of the input layer, hidden layer, and output layer is learned. Finally, learning the process of calculating the error between the correct label of each initially defined training data and the output value calculated by the artificial neural network, and learning the process of calculating the parameters of the input layer, hidden layer, and output layer that minimize the total sum of squared errors. Training on the operation principles of artificial neural networks using a spreadsheet was conducted for undergraduate non-major students. And image training data and basic artificial neural network development results were collected. In this paper, we analyzed the results of collecting two types of training data and the corresponding artificial neural network SW with small 12-pixel images, and presented methods and execution results of using the collected training data for Orange machine learning model learning and analysis tools.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Creating and Utilization of Virtual Human via Facial Capturing based on Photogrammetry (포토그래메트리 기반 페이셜 캡처를 통한 버추얼 휴먼 제작 및 활용)

  • Ji Yun;Haitao Jiang;Zhou Jiani;Sunghoon Cho;Tae Soo Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.113-118
    • /
    • 2024
  • Recently, advancements in artificial intelligence and computer graphics technology have led to the emergence of various virtual humans across multiple media such as movies, advertisements, broadcasts, games, and social networking services (SNS). In particular, in the advertising marketing sector centered around virtual influencers, virtual humans have already proven to be an important promotional tool for businesses in terms of time and cost efficiency. In Korea, the virtual influencer market is in its nascent stage, and both large corporations and startups are preparing to launch new services related to virtual influencers without clear boundaries. However, due to the lack of public disclosure of the development process, they face the situation of having to incur significant expenses. To address these requirements and challenges faced by businesses, this paper implements a photogrammetry-based facial capture system for creating realistic virtual humans and explores the use of these models and their application cases. The paper also examines an optimal workflow in terms of cost and quality through MetaHuman modeling based on Unreal Engine, which simplifies the complex CG work steps from facial capture to the actual animation process. Additionally, the paper introduces cases where virtual humans have been utilized in SNS marketing, such as on Instagram, and demonstrates the performance of the proposed workflow by comparing it with traditional CG work through an Unreal Engine-based workflow.

Development of checklist questions to measure AI core competencies of middle school students (중학생의 AI 핵심역량 측정을 위한 체크리스트 문항 개발)

  • Eun Chul Lee;JungSoo Han
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.49-55
    • /
    • 2024
  • This study was conducted with the purpose of developing a checklist of questions to measure middle school students' AI capabilities. To achieve the goal of the study, literature analysis and question development Delphi survey were used. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements are understanding of artificial intelligence (5 elements), artificial intelligence thinking (5 elements), utilization of artificial intelligence (4 elements), artificial intelligence ethics (6 elements), and artificial intelligence social-emotion (6 elements). elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 31 questions were developed. The developed questions were verified through the first Delphi survey, and 10 questions were revised according to the revision opinions. The validity of 31 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the level of reliability of measurement results increases.

Establishment of Valve Replacement Registry and Risk Factor Analysis Based on Database Application Program (데이터베이스 프로그램에 기반한 심장판막 치환수술 환자의 레지스트리 확립 및 위험인자 분석)

  • Kim, Kyung-Hwan;Lee, Jae-Ik;Lim, Cheong;Ahn, Hyuk
    • Journal of Chest Surgery
    • /
    • v.35 no.3
    • /
    • pp.209-216
    • /
    • 2002
  • Background: Valvular heart disease is still the most common health problem in Korea. By the end of the year 1999, there has been 94,586 cases of open heart surgery since the first case in 1958. Among them, 36,247 cases were acquired heart diseases and 20,704 of those had valvular heart disease. But there was no database system and every surgeon and physician had great difficulties in analysing and utilizing those tremendous medical resources. Therefore, we developed a valve registry database program and utilize it for risk factor analysis and so on. Material and Method: Personal computer-based multiuser database program was created using Microsoft AccessTM. That consisted of relational database structure with fine-tuned compact field variables and server-client architecture. Simple graphic user interface showed easy-to-use accessability and comprehensibility. User-oriented modular structure enabled easier modification through native AccessTM functions. Infinite application of query function aided users to extract, summarize, analyse and report the study result promptly. Result: About three-thousand cases of valve replacement procedure were performed in our hospital from 1968 to 1999. Total number of prosthesis replaced was 3,700. The numbers of cases for mitral, aortic and tricuspid valve replacement were 1600, 584, 76, respectively. Among them, 700 patients received prosthesis in more than two positions. Bioprosthesis or mechanical prosthesis were used in 1,280 and 1,500 patients respectively Redo valve replacements were performed in 460 patients totally and 40 patients annually Conclusion: Database program for registry of valvular heart disease was successfully developed and used in personal computer-based multiuser environment. This revealed promising results and perspectives in database management and utilization system.

Design and Implementation of Medical Information System using QR Code (QR 코드를 이용한 의료정보 시스템 설계 및 구현)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

HW/SW Partitioning Techniques for Multi-Mode Multi-Task Embedded Applications (멀티모드 멀티태스크 임베디드 어플리케이션을 위한 HW/SW 분할 기법)

  • Kim, Young-Jun;Kim, Tae-Whan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.337-347
    • /
    • 2007
  • An embedded system is called a multi-mode embedded system if it performs multiple applications by dynamically reconfiguring the system functionality. Further, the embedded system is called a multi-mode multi-task embedded system if it additionally supports multiple tasks to be executed in a mode. In this Paper, we address a HW/SW partitioning problem, that is, HW/SW partitioning of multi-mode multi-task embedded applications with timing constraints of tasks. The objective of the optimization problem is to find a minimal total system cost of allocation/mapping of processing resources to functional modules in tasks together with a schedule that satisfies the timing constraints. The key success of solving the problem is closely related to the degree of the amount of utilization of the potential parallelism among the executions of modules. However, due to an inherently excessively large search space of the parallelism, and to make the task of schedulabilty analysis easy, the prior HW/SW partitioning methods have not been able to fully exploit the potential parallel execution of modules. To overcome the limitation, we propose a set of comprehensive HW/SW partitioning techniques which solve the three subproblems of the partitioning problem simultaneously: (1) allocation of processing resources, (2) mapping the processing resources to the modules in tasks, and (3) determining an execution schedule of modules. Specifically, based on a precise measurement on the parallel execution and schedulability of modules, we develop a stepwise refinement partitioning technique for single-mode multi-task applications. The proposed techniques is then extended to solve the HW/SW partitioning problem of multi-mode multi-task applications. From experiments with a set of real-life applications, it is shown that the proposed techniques are able to reduce the implementation cost by 19.0% and 17.0% for single- and multi-mode multi-task applications over that by the conventional method, respectively.