• Title/Summary/Keyword: computer monitor's image

Search Result 51, Processing Time 0.025 seconds

Remote Reading of Surgical Monitor's Physiological Readings: An Image Processing Approach

  • Weerathunga, Haritha;Vidanage, Kaneeka
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.308-314
    • /
    • 2022
  • As a result of the global effect of infectious diseases like COVID-19, remote patient monitoring has become a vital need. Surgical ICU monitors are attached around the clock for patients in critical care. Most ICU monitor systems, on the other hand, lack an output port for transferring data to an auxiliary device for post-processing. Similarly, strapping a slew of wearables to a patient for remote monitoring creates a great deal of discomfort and limits the patient's mobility. Hence, an unique remote monitoring technique for the ICU monitor's physiologically vital readings has been presented, recognizing this need as a research gap. This mechanism has been put to the test in a variety of modes, yielding an overall accuracy of close to 90%.

A Comparison of the Cognitive Effect of Three-dimensional Images on a Computer Monitor and a Mixed Reality Device (컴퓨터 모니터와 혼합현실기기의 3차원 이미지 인지 효과 비교 연구)

  • Choi, Sung-Jin;Liu, Shu-Jun
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.45-53
    • /
    • 2023
  • The educational benefits and potential of XR as a new medium are well recognized. However, there are still limitations in understanding the specific effects of XR compared to the more widely utilized representation of images on computer monitors. This study therefore aims to demonstrate the differences in effectiveness between the two technologies and to draw implications from a cognitive comparison of three-dimensional objects represented on a flat surface and virtually. The study was conducted a quantitative research method with an experiment involving two independent groups, and the results were tested using regression analysis. The results showed that for low-level, two-dimensional objects, the computer monitor method may be more effective, but above a certain level of complexity, the effectiveness of learning through the monitor tends to decrease rapidly. On the other hand, the group that used extended reality technology showed relatively high comprehension compared to the monitor group even as the complexity increased, and in particular, unlike the monitor group's rapidly decreasing comprehension level, the extended reality technology group showed a trend of decreasing comprehension with the level of complexity, suggesting the potential for compatibility and predictability in the use of technology.

Impact of viewing conditions on the performance assessment of different computer monitors used for dental diagnostics

  • Hastie, Thomas;Venske-Parker, Sascha;Aps, Johan K.M.
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.137-148
    • /
    • 2021
  • Purpose: This study aimed to assess the computer monitors used for analysis and interpretation of digital radiographs within the clinics of the Oral Health Centre of Western Australia. Materials and Methods: In total, 135 computer monitors(3 brands, 6 models) were assessed by analysing the same radiographic image of a combined 13-step aluminium step wedge and the Artinis CDDent 1.0® (Artinis Medical Systems B.V.®, Elst, the Netherlands) test object. The number of steps and cylindrical objects observed on each monitor was recorded along with the monitor's make, model, position relative to the researcher's eye level, and proximity to the nearest window. The number of window panels blocked by blinds, the outside weather conditions, and the number of ceiling lights over the surgical suite/cubicle were also recorded. MedCalc® version 19.2.1 (MedCalc Software Ltd®, Ostend, Belgium, https://www.medcalc.org; 2020) was used for statistical analyses(Kruskal-Wallis test and stepwise regression analysis). The level of significance was set at P<0.05. Results: Stepwise regression analysis showed that only the monitor brand and proximity of the monitor to a window had a significant impact on the monitor's performance (P<0.05). The Kruskal-Wallis test showed significant differences (P<0.05) in monitor performance for all variables investigated, except for the weather and the clinic in which the monitors were placed. Conclusion: The vast performance variation present between computer monitors implies the need for a review of monitor selection, calibration, and viewing conditions.

Development of Tele-image Processing Algorithm for Automatic Harvesting of House Melon (하우스멜론 수확자동화를 위한 원격영상 처리알고리즘 개발)

  • Kim, S.C.;Im, D.H.;Chung, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.196-203
    • /
    • 2008
  • Hybrid robust image processing algorithm to extract visual features of melon during the cultivation was developed based on a wireless tele-operative interface. Features of a melon such as size and shape including position were crucial to successful task automation and future development of cultivation data base. An algorithm was developed based on the concept of hybrid decision-making which shares a task between the computer and the operator utilizing man-computer interactive interface. A hybrid decision-making system was composed of three modules such as wireless image transmission, task specification and identification, and man-computer interface modules. Computing burden and the instability of the image processing results caused by the variation of illumination and the complexity of the environment caused by the irregular stem and shapes of leaves and shades were overcome using the proposed algorithm. With utilizing operator's teaching via LCD touch screen of the display monitor, the complexity and instability of the melon identification process has been avoided. Hough transform was modified for the image obtained from the locally specified window to extract the geometric shape and position of the melon. It took less than 200 milliseconds processing time.

The Analysis of Information Transfer Efficiency in Medical Image Display

  • Kim, Jong-Hyo;Min, Byoung-Goo;Han, Man-Cheong;Lee, Choong-Woong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.55-57
    • /
    • 1992
  • Image display is the last step of imaging chain in which the diagnostic information is transformed into perceivable intensities and transformed to observer's eye-brain system. In this process, a certain part of information may be efficiently transfered and another part may be inefficiently transfered leading to information loss. In this study, the visual perceptual properties of image display on CRT monitor has been investigated. Psychophysical experiment of target image detection has been performed using CRT monitor for various background grey levels, and the threshold difference grey levels required for visual discrimination have been predicted by computer simulation with visual model.

  • PDF

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

Design and Implementation of Mobile VNC System for GUI Control and Monitoring of Remote Computer (원격 컴퓨터의 GUI 제어와 모니터링을 위한 Mobile VNC 시스템 설계 및 구현)

  • Chon Hee-ja;Seo Jung-Hee;Park Hung-Bog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.912-919
    • /
    • 2005
  • The Growth in wireless Internet has made Networking possible at anytime and anywhere. So mobile devices like cellular phone and PDA are now used in various fields. In particular, the mobility of mobile devices has a great advantage in remote control. This paper designed and implemented a Mobile VNC system that transmitted the screen image of a remote computer, control the remote computer GU and monitor all by cellular phone. The proposed system consists of a Mobile Viewer un on the cellular phone, VNC Server m on a number of remote computers and a VNC Monitor. For communication between the VNC Server and the Mobile Viewer the MRFB protocol is used. The screen image transmitted to the Mobile Viewer is encoded in the PNG format supported by SK-VM, the Java execution environment of the Cellular phone. According to implementation results, the image is about $2KB\~8KB$. According to the 65 times transmission test, the average frame per second is 4.93fps in the emulator and a real cellular phone takes 0.8fps. Therefore, the proposed system is more efficient than existing systems.

Server and Client Simulator for Web-based 3D Image Communication

  • Ko, Jung-Hwan;Lee, Sang-Tae;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.38-44
    • /
    • 2004
  • In this paper, a server and client simulator for the web-based multi-view 3D image communication system is implemented by using the IEEE 1394 digital cameras, Intel Xeon server computer and Microsoft's DirectShow programming library. In the proposed system, two-view image is initially captured by using the IEEE 1394 stereo camera and then, this data is compressed through extraction of its disparity information in the Intel Xeon server computer and transmitted to the client system, in which multi-view images are generated through the intermediate views reconstruction method and finally display on the 3D display monitor. Through some experiments it is found that the proposed system can display 8-view image having a grey level of 8 bits with a frame rate of 15 fps.

Development of Real Time and Robust Feature Extraction Algorithm of Watermelon for Tele-robotic Operation (원격 로봇작업을 위한 실시간 수박 형상 추출 알고리즘)

  • Kim, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.71-78
    • /
    • 2004
  • Real time and robust algorithm to extract the features of watermelon was developed from the remotely transmitted image of the watermelon. Features of the watermelon at the cultivation site such as size and shape including position are crucial to the successful tole-robotic operation and development of the cultivation data base. Algorithm was developed based on the concept of task sharing between the computer and the operator utilizing man-computer interface. Task sharing was performed based on the functional characteristics of human and computer. Identifying watermelon from the image transmitted from the cultivation site is very difficult because of the variable light condition and the complex image contents such as soil, mulching vinyl, straws on the ground, irregular leaves and stems. Utilizing operator's teaching through the touch screen mounted on the image monitor, the complex time consuming image processing process and instability of processing results in the watermelon identification has been avoided. Color and brightness characteristics were analyzed from the image area specified by the operator's teaching. Watermelon segmentation was performed using the brightness and color distribution of the specified imae processing area. Modified general Hough transform was developed to extract the shape, major and minor axes, and the position, of the watermelon. It took less than 100 msec of the image processing time, and was a lot faster than conventional approach. The proposed method showed the robustness and practicability in identifying watermelon from the wireless transmitted color image of the cultivation site.

A Study of the Development of the Digital Image Management and Display System Using a PC (PC를 이용한 의료 영상 관리 및 디스플레이 시스템 개발에 관한 연구)

  • 김동윤
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.93-101
    • /
    • 1995
  • In this paper, we implemented a digital medical image management and a remote monitor display system for a personal computer. The designed system can display up to a 1280${\times}$1024 image which can accomodate eight images with a 256${\times}$256${\times}$8bits. When one of these images is clicked by the mouse, the selected image can be displayed with 256${\times}$256${\times}$8bits or 1024${\times}$1024${\times}$8bits. For the selected image, we can use one of the image processing functions in this system and send it to a remote monitor for the close examinations. To search and store digital images effectively, we constructed and image database management system with the B+TREE structure. This system can be operated in an IBM-PC 386 or higher and all the function are performed easily with a mouse to provide a user firendly environment.

  • PDF