• 제목/요약/키워드: computer image analysis

검색결과 1,466건 처리시간 0.036초

Adaptive Image Segmentation Based on Histogram Transition Zone Analysis

  • Acuna, Rafael Guillermo Gonzalez;Mery, Domingo;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.299-307
    • /
    • 2016
  • While segmenting "complex" images (with multiple objects, many details, etc.) we experienced a need to explore new ways for time-efficient and meaningful image segmentation. In this paper we propose a new technique for image segmentation which has only one variable for controlling the expected number of segments. The algorithm focuses on the treatment of pixels in transition zones between various label distributions. Results of the proposed algorithm (e.g. on the Berkeley image segmentation dataset) are comparable to those of GMM or HMM-EM segmentation, but are achieved with significantly reduced computation time.

Shape Study of Wear Debris in Oil-Lubricated System with Neural Network

  • Park, Heung-Sik;Seo, Young-Baek;Cho, Yon-Sang
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.65-70
    • /
    • 2001
  • The wear debris is fall off the moving surfaces in oil-lubricated systems and its morphology is directly related to the damage and failure to the interacting surfaces. The morphology of the wear particles are therefore directly indicative of wear processes occurring in tribological system. The computer image processing and artificial neural network was applied to shape study and identify wear debris generated from the lubricated moving system. In order to describe the characteristics of various wear particles, four representative parameter (50% volumetric diameter, aspect, roundness and reflectivity) from computer image analysis for groups of randomly sampled wear particles, are used as inputs to the network and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristics and recognized the friction condition and materials very well by neural network. We discuss how these approach can be applied to condition diagnosis of the oil-lubricated tribological system.

  • PDF

네트워크 카메라 영상에서 원근감 효과를 고려한 군집 움직임 분석 (The Crowd Activity Analysis based on Perspective Effect in Network Camera)

  • 이상걸;박현준;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.415-418
    • /
    • 2008
  • 본 논문에서는 특정 지역을 연속해서 촬영하는 고정된 카메라 영상에서 사람들의 움직임을 검출하고 움직임을 분석하여 정량화 하는 방법을 제안한다. 먼저 배경 영상을 획득하기 위하여 일정 시간동안의 입력 영상을 누적하고 평균값으로 정규화 한다. 그리고 영상을 계속 누적하여 배경 영상을 실시간으로 갱신한다. 다음으로 획득된 배경 영상과 현재 영상에 대하여 차영상과 이진화를 수행하고 팽창 연산과 연결 성분 분석으로 잡영을 제거한다. 그리고 잡영이 제거된 영상에서 원근감 효과를 고려하는 가중치를 적용하여 움직임이 있는 객체를 클러스터링 하는 수정된 ART2 클러스터링 방법을 제안한다. 마지막으로 클러스터링 결과 정보를 이용하여 움직임을 정량화 한다. 제안하는 방법을 실내 환경에 설치된 네트워크 카메라로부터 영상을 획득하여 실험한 결과, 영상의 원근감 효과에 따라 군집 크기가 차이남에도 강인하게 분석할 수 있음을 확인하였다.

  • PDF

Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

  • BAEK, Aram;LEE, Kangwoon;KIM, Jae-Gon;CHOI, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4948-4967
    • /
    • 2017
  • On mobile devices, image sequences are widely used for multimedia applications such as computer vision, video enhancement, and augmented reality. However, the real-time processing of mobile devices is still a challenge because of constraints and demands for higher resolution images. Recently, heterogeneous computing methods that utilize both a central processing unit (CPU) and a graphics processing unit (GPU) have been researched to accelerate the image sequence processing. This paper deals with various optimizing techniques such as parallel processing by the CPU and GPU, distributed processing on the CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using the optimizing techniques both individually and combined, several heterogeneous computing structures were implemented and their effectiveness were analyzed. The experimental results show that the heterogeneous computing facilitates executions up to 3.5 times faster than CPU-only processing.

무선 전송 채널 환경에서 오디오와 로고 영상을 이용한 워터마킹 성능분석 (Performance Analysis of Watermarking using Audio and Image Watermark in Wireless Channel Environment)

  • 김윤호;박기홍
    • 한국항행학회논문지
    • /
    • 제10권4호
    • /
    • pp.406-412
    • /
    • 2006
  • 본 논문에서는 워터마크 데이터로써 오디오 신호를 이용한 워터마크 기법과 이미지를 삽입하는 워터마크 기법의 성능을 분석하였다. AWGN 채널 환경에서 OFDM/QPSK 시스템을 이용하여 워터마킹된 영상을 전송하고 워터마크 정보를 추출하였다. 실험결과, 오디오를 이용한 워터마크 삽입 방법이 이미지 기반 방법보다 우수한 바, SNR=3 [dB]까지 오디오 신호가 복원 가능하였다.

  • PDF

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

Energy-Efficient Biometrics-Based Remote User Authentication for Mobile Multimedia IoT Application

  • Lee, Sungju;Sa, Jaewon;Cho, Hyeonjoong;Park, Daihee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6152-6168
    • /
    • 2017
  • Recently, the biometric-based authentication systems such as FIDO (Fast Identity Online) are increased in mobile computing environments. The biometric-based authentication systems are performed on the mobile devices with the battery, the improving energy efficiency is important issue. In the case, the size of images (i.e., face, fingerprint, iris, and etc.) affects both recognition accuracy and energy consumption, and hence the tradeoff analysis between the both recognition accuracy and energy consumption is necessary. In this paper, we propose an energy-efficient way to authenticate based on biometric information with tradeoff analysis between the both recognition accuracy and energy consumption in multimedia IoT (Internet of Things) transmission environments. We select the facial information among biometric information, and especially consider the multicore-based mobile devices. Based on our experimental results, we prove that the proposed approach can enhance the energy efficiency of GABOR+LBP+GRAY VALUE, GABOR+LBP, GABOR, and LBP by factors of 6.8, 3.6, 3.6, and 2.4 over the baseline, respectively, while satisfying user's face recognition accuracy.

Efficient Face Recognition using Low-Dimensional PCA: Hierarchical Image & Parallel Processing

  • Song, Young-Jun;Kim, Young-Gil;Kim, Kwan-Dong;Kim, Nam;Ahn, Jae-Hyeong
    • International Journal of Contents
    • /
    • 제3권2호
    • /
    • pp.1-5
    • /
    • 2007
  • This paper proposes a technique for principal component analysis (PCA) to raise the recognition rate of a front face in a low dimension by hierarchical image and parallel processing structure. The conventional PCA shows a recognition rate of less than 50% in a low dimension (dimensions 1 to 6) when used for facial recognition. In this paper, a face is formed as images of 3 fixed-size levels: the 1st being a region around the nose, the 2nd level a region including the eyes, nose, and mouth, and the 3rd level image is the whole face. PCA of the 3-level images is treated by parallel processing structure, and finally their similarities are combined for high recognition rate in a low dimension. The proposed method under went experimental feasibility study with ORL face database for evaluation of the face recognition function. The experimental demonstration has been done by PCA and the proposed method according to each level. The proposed method showed high recognition of over 50% from dimensions 1 to 6.

Analysis on the Effect of Spectral Index Images on Improvement of Classification Accuracy of Landsat-8 OLI Image

  • Magpantay, Abraham T.;Adao, Rossana T.;Bombasi, Joferson L.;Lagman, Ace C.;Malasaga, Elisa V.;Ye, Chul-Soo
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.561-571
    • /
    • 2019
  • In this paper, we analyze the effect of the representative spectral indices, normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI) on classification accuracies of Landsat-8 OLI image.After creating these spectral index images, we propose five methods to select the spectral index images as classification features together with Landsat-8 OLI bands from 1 to 7. From the experiments we observed that when the spectral index image of NDVI or NDWI is used as one of the classification features together with the Landsat-8 OLI bands from 1 to 7, we can obtain higher overall accuracy and kappa coefficient than the method using only Landsat-8 OLI 7 bands. In contrast, the classification method, which selected only NDBI as classification feature together with Landsat-8 OLI 7 bands did not show the improvement in classification accuracies.

Separation of Text and Non-text in Document Layout Analysis using a Recursive Filter

  • Tran, Tuan-Anh;Na, In-Seop;Kim, Soo-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4072-4091
    • /
    • 2015
  • A separation of text and non-text elements plays an important role in document layout analysis. A number of approaches have been proposed but the quality of separation result is still limited due to the complex of the document layout. In this paper, we present an efficient method for the classification of text and non-text components in document image. It is the combination of whitespace analysis with multi-layer homogeneous regions which called recursive filter. Firstly, the input binary document is analyzed by connected components analysis and whitespace extraction. Secondly, a heuristic filter is applied to identify non-text components. After that, using statistical method, we implement the recursive filter on multi-layer homogeneous regions to identify all text and non-text elements of the binary image. Finally, all regions will be reshaped and remove noise to get the text document and non-text document. Experimental results on the ICDAR2009 page segmentation competition dataset and other datasets prove the effectiveness and superiority of proposed method.