• Title/Summary/Keyword: computer algorithm

Search Result 12,715, Processing Time 0.036 seconds

Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments (IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템)

  • Song, Jin Su;Kim, Soo Jin;Shin, Young Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.277-284
    • /
    • 2021
  • Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.

Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network (YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향)

  • Wang, Xufei;Chen, Le;Li, Qiutan;Son, Jinku;Ding, Xilong;Song, Jeongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.157-165
    • /
    • 2020
  • Aiming at the development of neural network and self-driving data set, it is also an idea to improve the performance of network model to detect moving objects by dividing the data set. In Darknet network framework, the YOLOv4 (You Only Look Once v4) network model was used to train and test Udacity data set. According to 7 proportions of the Udacity data set, it was divided into three subsets including training set, validation set and test set. K-means++ algorithm was used to conduct dimensional clustering of object boxes in 7 groups. By adjusting the super parameters of YOLOv4 network for training, Optimal model parameters for 7 groups were obtained respectively. These model parameters were used to detect and compare 7 test sets respectively. The experimental results showed that YOLOv4 can effectively detect the large, medium and small moving objects represented by Truck, Car and Pedestrian in the Udacity data set. When the ratio of training set, validation set and test set is 7:1.5:1.5, the optimal model parameters of the YOLOv4 have highest detection performance. The values show mAP50 reaching 80.89%, mAP75 reaching 47.08%, and the detection speed reaching 10.56 FPS.

A Study on the Design and Implementation of Multi-Disaster Drone System Using Deep Learning-Based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Han, Yamin;Byun, Heejung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • In recent years, human damage and loss of money due to various disasters such as typhoons, earthquakes, forest fires, landslides, and wars are steadily occurring, and a lot of manpower and funds are required to prevent and recover them. In this paper, we designed and developed a disaster drone system based on artificial intelligence in order to monitor these various disaster situations in advance and to quickly recognize and respond to disaster occurrence. In this study, multiple disaster drones are used in areas where it is difficult for humans to monitor, and each drone performs an efficient search with an optimal path by applying a deep learning-based optimal path algorithm. In addition, in order to solve the problem of insufficient battery capacity, which is a fundamental problem of drones, the optimal route of each drone is determined using Ant Colony Optimization (ACO) technology. In order to implement the proposed system, it was applied to a forest fire situation among various disaster situations, and a forest fire map was created based on the transmitted data, and a forest fire map was visually shown to the fire fighters dispatched by a drone equipped with a beam projector. In the proposed system, multiple drones can detect a disaster situation in a short time by simultaneously performing optimal path search and object recognition. Based on this research, it can be used to build disaster drone infrastructure, search for victims (sea, mountain, jungle), self-extinguishing fire using drones, and security drones.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

Effect of All Sky Image Correction on Observations in Automatic Cloud Observation (자동 운량 관측에서 전천 영상 보정이 관측치에 미치는 효과)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • Various studies have been conducted on cloud observation using all-sky images acquired with a wide-angle camera system since the early 21st century, but it is judged that an automatic observation system that can completely replace the eye observation has not been obtained. In this study, to verify the quantification of cloud observation, which is the final step of the algorithm proposed to automate the observation, the cloud distribution of the all-sky image and the corrected image were compared and analyzed. The reason is that clouds are formed at a certain height depending on the type, but like the retina image, the center of the lens is enlarged and the edges are reduced, but the effect of human learning ability and spatial awareness on cloud observation is unknown. As a result of this study, the average cloud observation error of the all-sky image and the corrected image was 1.23%. Therefore, when compared with the eye observation in the decile, the error due to correction is 1.23% of the observed amount, which is very less than the allowable error of the eye observation, and it does not include human error, so it is possible to collect accurately quantified data. Since the change in cloudiness due to the correction is insignificant, it was confirmed that accurate observations can be obtained even by omitting the unnecessary correction step and observing the cloudiness in the pre-correction image.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection (교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발)

  • Kim, Young-Nam;Cho, Jun-Sang;Kim, Jun-Kyeong;Kim, Moon-Hyun;Kim, Jin-Pyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.117-126
    • /
    • 2022
  • Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed.

Analysis of Anti-Reversing Functionalities of VMProtect and Bypass Method Using Pin (VMProtect의 역공학 방해 기능 분석 및 Pin을 이용한 우회 방안)

  • Park, Seongwoo;Park, Yongsu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.297-304
    • /
    • 2021
  • Commercial obfuscation tools (protectors) aim to create difficulties in analyzing the operation process of software by applying obfuscation techniques and Anti-reversing techniques that delay and interrupt the analysis of programs in software reverse engineering process. In particular, in case of virtualization detection and anti-debugging functions, the analysis tool exits the normal execution flow and terminates the program. In this paper, we analyze Anti-reversing techniques of executables with Debugger Detection and Viralization Tools Detection options through VMProtect 3.5.0, one of the commercial obfuscation tools (protector), and address bypass methods using Pin. In addition, we predicted the location of the applied obfuscation technique by finding out a specific program termination routine through API analysis since there is a problem that the program is terminated by the Anti-VM technology and the Anti-DBI technology and drew up the algorithm flowchart for bypassing the Anti-reversing techniques. Considering compatibility problems and changes in techniques from differences in versions of the software used in experiment, it was confirmed that the bypass was successful by writing the pin automation bypass code in the latest version of the software (VMProtect, Windows, Pin) and conducting the experiment. By improving the proposed analysis method, it is possible to analyze the Anti-reversing method of the obfuscation tool for which the method is not presented so far and find a bypass method.

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.

Digital Twin-Based Communication Optimization Method for Mission Validation of Swarm Robot (군집 로봇의 임무 검증 지원을 위한 디지털 트윈 기반 통신 최적화 기법)

  • Gwanhyeok, Kim;Hanjin, Kim;Junhyung, Kwon;Beomsu, Ha;Seok Haeng, Huh;Jee Hoon, Koo;Ho Jung, Sohn;Won-Tae, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Robots are expected to expand their scope of application to the military field and take on important missions such as surveillance and enemy detection in the coming future warfare. Swarm robots can perform tasks that are difficult or time-consuming for a single robot to be performed more efficiently due to the advantage of having multiple robots. Swarm robots require mutual recognition and collaboration. So they send and receive vast amounts of data, making it increasingly difficult to verify SW. Hardware-in-the-loop simulation used to increase the reliability of mission verification enables SW verification of complex swarm robots, but the amount of verification data exchanged between the HILS device and the simulator increases exponentially according to the number of systems to be verified. So communication overload may occur. In this paper, we propose a digital twin-based communication optimization technique to solve the communication overload problem that occurs in mission verification of swarm robots. Under the proposed Digital Twin based Multi HILS Framework, Network DT can efficiently allocate network resources to each robot according to the mission scenario through the Network Controller algorithm, and can satisfy all sensor generation rates required by individual robots participating in the group. In addition, as a result of an experiment on packet loss rate, it was possible to reduce the packet loss rate from 15.7% to 0.2%.