• 제목/요약/키워드: computationally-efficient simulation

검색결과 105건 처리시간 0.02초

적응적 비선형 필터를 이용한 효율적인 블록 현상 제거 기술 (Computationally Efficient Post-processing for HDTV)

  • 김윤;정재한;고성제
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.53-56
    • /
    • 2001
  • This paper presents a computationally efficient post-processing algorithm for HDTV. The proposed algorithm can reduce both blocking artifacts and mosquito noise while preserving the sharpness and naturalness of the reconstructed video signal. Performance improvements compared with other techniques are obtained according to simulation results.

  • PDF

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.

Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces

  • Lee, Chang Seok;Sung, Min Soo;Han, Sang Whan;Jee, Hyun Woo
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1125-1138
    • /
    • 2018
  • During earthquakes, braces behave in complex manners because of the asymmetric response nature of their responses in tension and compression. Hollow structural sections (HSS) have been popularly used for braces due to their sectional efficiency in compression. The purpose of this study is to accurately simulate the cyclic behavior of rectangular HSS braces using a computationally efficient numerical model. A conceptually efficient and simple physical theory model is used as a basis model. To improve the accuracy of the model, cyclic beam growth and buckling load, as well as the incidences of local buckling and brace fracture are estimated using empirical equations obtained from regression analyses using test data on rectangular HSS braces. The accuracy of the proposed model is verified by comparing actual and simulated cyclic curves of brace specimens with various slenderness and width-to-thickness ratios.

Computationally Efficient 2-D DOA Estimation Using Two Parallel Uniform Linear Arrays

  • Cao, Hailin;Yang, Lisheng;Tan, Xiaoheng;Yang, Shizhong
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.806-808
    • /
    • 2009
  • A new computationally efficient algorithm-based propagator method for two-dimensional (2-D) direction-of-arrival (DOA) estimation is proposed, which uses two parallel uniform linear arrays. The algorithm takes advantage of the special structure of the array which enables 2-D DOA estimation without pair matching. Simulation results show that the proposed algorithm achieves very accurate estimation at a computational cost 4 dB lower than that of standard methods.

A Computationally Efficient Optimal Allocation Algorithms for Large Data

  • Kwon, Il-Hyung;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.561-572
    • /
    • 2007
  • In this paper, we describe various efficient optimization algorithms for obtaining an optimal customer allocation in the telephone call center. The main advantages of the proposed algorithms are simple, fast and very attractive for massive dataset. The proposed algorithms also provide comparable performance with the other more sophisticated linear programming methods. The proposed optimal allocation algorithms increase the customer contact, response rate and management product and optimize the performance of call centers. Simulation results are given to demonstrate the effectiveness of our algorithms.

  • PDF

대형 크랭크샤프트 단조 공정의 컴퓨터 시뮬레이션 (Finite Element Simulation of Hot forging of Special Purpose Large Crankshafts)

  • 박정휘;이민철;박태현;조범제;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.297-300
    • /
    • 2008
  • In this paper, a simple and computationally efficient approach to non-isothermal three-dimensional analysis of hot forging processes is presented based on rigid-thermoviscoplastic finite element method. In the approach, the temperatures of dies are considered to be constant. Two hot forging processes of large crank shafts ranging from 800 to 1000 kg are simulated using the simple approach.

  • PDF

ULSI급 CMOS 소자 특성 분석을 위한 몬테 카를로 이온 주입 공정 시뮬레이션시의 효율적인 가상 이온 발생법 (Computationally Efficient ion-Splitting Method for Monte Carlo ion Implantation Simulation for the Analysis of ULSI CMOS Characteristics)

  • 손명식;이진구
    • 대한전자공학회논문지SD
    • /
    • 제38권11호
    • /
    • pp.771-780
    • /
    • 2001
  • ULSI급 CMOS 소자를 개발, 제작하고 또한 그것의 전기적 특성을 정확히 분석하기 위해서는 공정 및 소자 시뮬레이터의 사용이 필수적이다. 대면적 몬테 카를로 시뮬레이션 결과가 다차원 소자 시뮬레이터의 입력으로 사용되려면 과도한 입자수의 증가로 비효율성을 띄게 된다. 본 논문에서는 이러한 문제를 해결하기 위해 3차원 몬테 카를로 이온 주입 시뮬레이터인 TRICSI 코드를 이용하여 물리적으로 타당하며 또한 효율적으로 시뮬레이션 입자 수를 증가시켜 대면적 이온 주입시의 3차원 통계 분포의 잡음 영역을 최소화하는 방법을 제안하였다. 후속 공정인 열확산 공정이나 RTA(급속 열처리) 공정의 확산 방정식을 푸는 경우 발산을 막기 위해 몬테 카를로 시뮬레이션 결과의 통계 분포에 대한 후처리 과정으로 3차원 셀을 이용한 보간 알고리듬을 적용하였다. 시뮬레이션 수행 결과 가상 궤적 발생법(split-trajectory method)만을 사용한 것에 비해 계산 시간은 2배로 늘이지 않는 범위에서 10배 이상의 이온 입자 생성 분포를 얻을 수 있다.

  • PDF

Simulation based improved seismic fragility analysis of structures

  • Ghosh, Shyamal;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.569-581
    • /
    • 2017
  • The Monte Carlo Simulation (MCS) based seismic fragility analysis (SFA) approach allows defining more realistic relationship between failure probability and seismic intensity. However, the approach requires simulating large number of nonlinear dynamic analyses of structure for reliable estimate of fragility. It makes the approach computationally challenging. The response surface method (RSM) based metamodeling approach which replaces computationally involve complex mechanical model of a structure is found to be a viable alternative in this regard. An adaptive moving least squares method (MLSM) based RSM in the MCS framework is explored in the present study for efficient SFA of existing structures. In doing so, the repetition of seismic intensity for complete generation of fragility curve is avoided by including this as one of the predictors in the response estimate model. The proposed procedure is elucidated by considering a non-linear SDOF system and an existing reinforced concrete frame considered to be located in the Guwahati City of the Northeast region of India. The fragility results are obtained by the usual least squares based and the proposed MLSM based RSM and compared with that of obtained by the direct MCS technique to study the effectiveness of the proposed approach.

Efficient wind fragility analysis of RC high rise building through metamodelling

  • Bhandari, Apurva;Datta, Gaurav;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.199-211
    • /
    • 2018
  • This paper deals with wind fragility and risk analysis of high rise buildings subjected to stochastic wind load. Conventionally, such problems are dealt in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, to make the procedure computationally efficient, application of metamodelling technique in fragility analysis is explored in the present study. Since, accuracy by the conventional Least Squares Method (LSM) based metamodelling is often challenged, an efficient Moving Least Squares Method based adaptive metamodelling technique is proposed for wind fragility analysis. In doing so, artificial time history of wind load is generated by three wind field models: i.e., a simple one based on alongwind component of wind speed; a more detailed one considering coherence and wind directionality effect, and a third one considering nonstationary effect of mean wind. The results show that the proposed approach is more accurate than the conventional LSM based metamodelling approach when compared to full simulation approach as reference. At the same time, the proposed approach drastically reduces computational time in comparison to the full simulation approach. The results by the three wind field models are compared. The importance of non-linear structural analysis in fragility evaluation has been also demonstrated.

Tracking Filter Design for a Maneuvering target Using Jump Processes

  • Lim, Sang-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.373-384
    • /
    • 1998
  • This paper presents a maneuvering target model with the maneuver dynamics modeled as a jump process of Poisson-type. The jump process represents the deterministic maneuver(or pilot commands) and is described by a stochastic differential equation driven by a Poisson process taking values a set of discrete states. Employing the new maneuver model along with the noisy observations described by linear difference equations, the author has developed a new linear, recursive, unbiased minimum variance filter, which is structurally simple, computationally efficient, and hence real-time implementable. Futhermore, the proposed filter does not involve a computationally burdensome technique to compute the filter gains and corresponding covariance matrices and still be able to track effectively a fast maneuvering target. The performance of the proposed filter is assessed through the numerical results generated from the Monte-Carlo simulation.

  • PDF