• Title/Summary/Keyword: computational wind tunnel

Search Result 322, Processing Time 0.035 seconds

NUMERICAL ANALYSIS OF THE GUST GENERATOR FOR KARI LOW SPEED WIND TUNNEL (KARI 중형 아음속 풍동용 돌풍 발생기의 수치해석)

  • Park Y. M.;Kwon K. J.;Lee S. W.;Kim T. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-279
    • /
    • 2005
  • The vortex convection and induced flow field behind the KARI 3m x 4m LSWT gust generator was computed by using Computational Fluid Dynamics. For the accurate simulation of vortex convection, inviscid, laminar, Spalart-Allmars k-e and k-w turbulence models were tested with the NAL gust generator configuration and Spalart-Allmaras turbulence model was selected for the prediction of induced flow field behind the KARI LSWT gust generator. The wind tunnel test was also carried out at KARI LSWT and the results were compared with CFD prediction.

  • PDF

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

Wind Tunnel Investigation of Fluctuating Pressure Inside Building (풍하중에 의한 건물내부 압력의 동적변화에 관한 연구)

  • 이경훈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.133-141
    • /
    • 1990
  • The nature of fluctuating air pressure inside building was studied by testing a building model in a wind tunnel. The model has a single room and a window opening. Various opening conditions were tested in both laminar uniform wind and turbulent boundary-layer wind. The RMS and the spectra of the fluctuating internal pressure were measured. The test results support a recent theory which predicts the behavior of internal pressure under high wind based on aerodynamic analysis.

  • PDF

COMPUTATIONAL PREDICTION OF ICE ACCRETION AROUND AIR INTAKE OF AIRCRAFT (CFD를 이용한 항공기 공기 흡입구 주위 결빙 예측)

  • Jung, K.Y.;Ahn, G.B.;Jung, S.K.;Myong, R.S.;Cho, T.H.;Shin, H.B.;Jung, J.H.;Choi, Y.H.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.465-468
    • /
    • 2011
  • Ice accretion on aircraft surface can greatly deteriorate the safety of aircraft. In particular, it can be a cause of impediment for aircraft performances such as aerodynamic characteristics, control, and engine. Numerical simulation of icing accretion based on the state-of-art CFD techniques can be alternative to expensive icing wind tunnel test or flight test. In this study, icing conditions are defined in order to predict the ice accretions around the air intake of aircraft. Then the range and amount of ice accretion on the intake in icing wind tunnel were investigated In addition, a study on the size effect of icing wind tunnel was conducted in order to check the compatibility with the real in-flight test environment.

  • PDF

The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics (전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가)

  • Han, Sang-Eul;Park, Ji-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

Processing of dynamic wind pressure loads for temporal simulations

  • Hemon, Pascal
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.425-442
    • /
    • 2015
  • This paper discusses the processing of the wind loads measured in wind tunnel tests by means of multi-channel pressure scanners, in order to compute the response of 3D structures to atmospheric turbulence in the time domain. Data compression and the resulting computational savings are still a challenge in industrial contexts due to the multiple trial configurations during the construction stages. The advantage and robustness of the bi-orthogonal decomposition (BOD) is demonstrated through an example, a sail glass of the Fondation Louis Vuitton, independently from any tentative physical interpretation of the spatio-temporal decomposition terms. We show however that the energy criterion for the BOD has to be more rigorous than commonly admitted. We find a level of 99.95 % to be necessary in order to recover the extreme values of the loads. Moreover, frequency limitations of wind tunnel experiments are sometimes encountered in passing from the scaled model to the full scale structure. These can be alleviated using a spectral extension of the temporal function terms of the BOD.

Comparison Study on Aerodynamic Performance and Wake Flow Field for a MW-Class Wind Turbine Model (대형 풍력터빈 모형의 공력 성능 및 후류 유동장에 대한 비교 연구)

  • Jeong, Duwon;Won, Young Soo;Kang, Seung-Hee
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.32-38
    • /
    • 2019
  • A comparison study between computational-fluid-dynamics simulation and wind tunnel test for a megawatt-class wind turbine is conducted. For the study, flow-field in wake, basic aerodynamic performance, and effect of the yaw error for a 1/86 scaled-down model of the NREL offshore 5 MW wind turbine are numerically calculated using commercial software "FloEFD" with $k-{\varepsilon}$ turbulence model. The computed results are compared to the wind tunnel test performed by the constant-velocity mode for the model. It is shown that discrepancy are found between the two results at lower tip-speed ratio and higher yaw angle, however, the velocity-defection distribution in the wake, the torque coefficient at moderated and high tip-speed ratios are in good agreement with the wind tunnel test.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF ISLAND PLATFORMS IN A SUBWAY STATION CAUSED BY A PASSING TRAIN (섬식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압 해석)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in island platform caused by a passing train are investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique adopted for the train movement. To achieve more accurate results, detailed shape of train is included in a computational domain and the entrance and exit tunnel of platform are also modeled. Numerical analyses are conducted on three operational conditions of different velocity variation.

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models

  • Juretic, Franjo;Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.687-708
    • /
    • 2014
  • The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.