• Title/Summary/Keyword: computational power

Search Result 1,924, Processing Time 0.032 seconds

A Study on the Design of Power System Stabilizer using Real Variable Genetic Algorithm (실변수 유전알고리즘을 이용한 전력계통 안정화장치 설계)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.479-485
    • /
    • 2000
  • This paper presents a analysis method for dynamic characteristics of power system using a Genetic-based Power System Stabilizer(PSS). The proposed PSS parameters are optimized using Genetic Algorithm(GA) in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. The results tested on a single machined infinite bus system verify that the proposed controller has better dynamic performance than conventional controller.

  • PDF

ON QUASI-PERFECT AND POWER AUTOMATA

  • Park, Chin-Hong;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.559-569
    • /
    • 2004
  • In this paper we shall discuss the quasi-perfect automata associated with power automata. We shall give the fact that its power automaton is invertible if an automaton A is quasi-perfect. Moreover, some subgroups and normal subgroups of the characteristic semigroup X(M) will have the very interesting parts in their structures.

Random Point Blinding Methods for Koblitz Curve Cryptosystem

  • Baek, Yoo-Jin
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.362-369
    • /
    • 2010
  • While the elliptic curve cryptosystem (ECC) is getting more popular in securing numerous systems, implementations without consideration for side-channel attacks are susceptible to critical information leakage. This paper proposes new power attack countermeasures for ECC over Koblitz curves. Based on some special properties of Koblitz curves, the proposed methods randomize the involved elliptic curve points in a highly regular manner so the resulting scalar multiplication algorithms can defeat the simple power analysis attack and the differential power analysis attack simultaneously. Compared with the previous countermeasures, the new methods are also noticeable in terms of computational cost.

RELATION BETWEEN THE SPACE $M_{\Psi}$ AND WEAK $L_P$

  • Lee, Chong-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.915-920
    • /
    • 1999
  • We showed the upper p-estimate and p-power concavity are the necessary and sufficient condition of the space $M_{\Psi}$to be weak $L_pX>.

GAME MODEL AND ITS SOLVING METHOD FOR OPTIMAL SCALE OF POWER PLANTS ENTERING GENERATION POWER MARKET

  • Tan, Zhongfu;Chen, Guangjuan;Li, Xiaojun
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.337-347
    • /
    • 2008
  • Based on social welfare maximum theory, the optimal scale of power plants entering generation power market being is researched. A static non-cooperative game model for short-term optimization of power plants with different cost is presented. And the equilibrium solutions and the total social welfare are obtained. According to principle of maximum social welfare selection, the optimization model is solved, optimal number of power plants entering the market is determined. The optimization results can not only increase the customer surplus and improve power production efficiency, but also sustain normal profits of power plants and scale economy of power production, and the waste of resource can also be avoided. At last, case results show that the proposed model is efficient.

  • PDF

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF A HYDRAULIC PISTON PUMP BASED ON THE ANGLE OF THE SWASH-PLATE AND THE DISCHARGE PRESSURE (유압 피스톤펌프의 토출압력 및 사판각도 변화에 따른 유동특성 해석)

  • Yoon, J.H.;Lee, K.;Kang, M.C.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • In various industries related with construction and military machinery, a large amount of power is normally required because such machinery operations, such as digging or breaking, take place under difficult working conditions in a rough environment. Thus, a hydraulic system needs to be applied as the major power transfer system. To produce and supply hydraulic power depending on the various load conditions, a hydraulic piston pump is utilized as a typical power source for a hydraulic system. In the present study, numerical simulations were conducted using the commercial program, Ansys CFX 14.5. To lubricate the moving parts as the pump starts to operate, a small amount of oil leaks out through the clearance between the orifice in the piston-shoe and the recess at the swash-plate. Taking this into consideration, a cylindrically shaped computational domain was modeled to maintain the same equivalent leakage area. To validate the numerical method applied herein, the numerical results of the flow rate at the discharge port were compared with the experimental data, and a good agreement between them was shown. Using the verified method, the effects of the discharge pressure and the angle of the swash-plate were also evaluated under several load conditions. The results of the present study can be useful information for a hydraulic piston pump used in many different manufacturing industries.