• Title/Summary/Keyword: computational modelling

Search Result 308, Processing Time 0.029 seconds

A Study on the Development of Air Pollution Model Applicable to the Complex Terrain (복잡지형에서의 대기순환모델에 관한 연구)

  • Yoon J. Y.;Yi S. C.;Hong M. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • The objective of this paper is to develop a computational model for the prediction of the pollutant spread from a mass source over a complex terrain. The model comprises a two-dimensional, steady state flow model and a concentration model which employs the results of the computed flow field. The computational model is applied to predict the spread of pollutants for Sanbon city, and the two cases have been compard with the results of SF/sub 6/ trace experiments.

  • PDF

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION (신발 설계 및 평가를 위한 컴퓨터 모델)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Preliminary Structural Configuration Using 3D Graphic Software (3D 그래픽 S/W이용 초기 구조계획)

  • Kim, Nam-Hee;Koh, Hyung-Moo;Hong, Sung-Gul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.504-507
    • /
    • 2011
  • 3D graphic softwares have brought design spaces beyond the limitations of Euclidean space. Moreover, as computational geometry has been considered together with algorithms, generative algorithms are being evolved. Recently 3D graphic softwares with the embedded generative algorithms allow designers to design free form curves and surfaces in a systematic way. While architectural design has been greatly affected by the advancement of 3D graphic technology, such attention has not given in the realm of structural design. Grasshopper is a platform in Rhino to deal with these Generative Algorithms and Associative modelling techniques. This study has tried to develop a module for preliminary structural configuration using Rhino with Grasshopper. To verify the proposed concept in this study, a module for designing a basic type of suspension structure is introduced.

  • PDF

Non-linear modeling of masonry churches through a discrete macro-element approach

  • Panto, Bartolomeo;Giresini, Linda;Sassu, Mauro;Calio, Ivo
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.223-236
    • /
    • 2017
  • Seismic assessment and rehabilitation of Monumental Buildings constitute an important issue in many regions around the world to preserve cultural heritage. On the contrary, many recent earthquakes have demonstrated the high vulnerability of this type of structures. The high nonlinear masonry behaviour requires ad hoc refined finite element numerical models, whose complexity and computational costs are generally unsuitable for practical applications. For these reasons, several authors proposed simplified numerical strategies to be used in engineering practice. However, most of these alternative methods are oversimplified being based on the assumption of in-plane behaviour of masonry walls. Moreover, they cannot be used for modelling the monumental structures for which the interaction between plane and out-plane behaviour governs the structural response. Recently, an innovative discrete-modelling approach for the simulation of both in-plane and out of-plane response of masonry structures was proposed and applied to study several typologies of historic structures. In this paper the latter model is applied with reference to a real case study, and numerically compared with an advanced finite element modelling. The method is applied to the St.Venerio church in Reggiolo (Italy), damaged during the 2012 Emilia-Romagna earthquake and numerically investigated in the literature.

A method for discrete event simulation and building information modelling integration using a game engine

  • Sandoval, Carlos A. Osorio;Tizani, Walid;Koch, Christian
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.405-418
    • /
    • 2018
  • Building Information Modelling (BIM) and Discrete Event Simulation (DES) are tools widely used in the context of the construction industry. While BIM is used to represent the physical and functional characteristics of a facility, DES models are used to represent its construction process. Integrating both is beneficial to those interested in the field of construction management since it has many potential applications. Game engines provide a human navigable 3D virtual environment in which the integrated BIM and DES models can be visualised and interacted with. This paper reports the experience obtained while developing a simulator prototype which integrates a BIM and a DES model of a single construction activity within a commercial game engine. The simulator prototype allows the user to visualise how the duration of the construction activity is affected by different input parameters interactively. It provides an environment to conduct DES studies using the user's own BIM models. This approach could increase the use of DES technologies in the context of construction management and engineering outside the research community. The presented work is the first step towards the development of a serious game for construction management education and was carried out to determine the suitable IT tools for its development.

Masonry infilled frame structures: state-of-the-art review of numerical modelling

  • Nicola, Tarque;Leandro, Candido;Guido, Camata;Enrico, Spacone
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.225-251
    • /
    • 2015
  • This paper presents a state-of-the-art review of the nonlinear modelling techniques available today for describing the structural behaviour of masonry infills and their interaction with frame structures subjected to in-plane loads. Following brief overviews on the behaviour of masonry-infilled frames and on the results of salient experimental tests, three modelling approaches are discussed in more detail: the micro, the meso and the macro approaches. The first model considers each of the infilled frame elements as separate: brick units, mortar, concrete and steel reinforcement; while the second approach treats the masonry infill as a continuum. The paper focuses on the third approach, which combines frame elements for the beams and columns with one or more equivalent struts for the infill panel. Due to its relative simplicity and computational speed, the macro model technique is more widely used today, though not all proposed models capture the main effects of the frame-infill interaction.

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety (수상안전을 위한 Sculling 동작의 전산유체역학적 연구)

  • Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.