• Title/Summary/Keyword: computational investigation

Search Result 719, Processing Time 0.048 seconds

Numerical Evaluation of CO Gas Distribution in Underground Parking Lot (지하주차장 내부 일산화탄소 가스 분포의 전산 해석적 평가)

  • Kim Jae Won;Ham Kyoung-A
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.33-42
    • /
    • 2002
  • Numerical estimation for concentration of mono-carbon oxygen (CO) gas inside an underground parking lot with auxiliary jet fans for enhancement of ventilation is carried out by using a commercial program. Main interest lies on the diagnosis of the present ventilation system including position and selection of auxiliarly fans in addition to main suppliers and exhausts. Details of both flows and concentration of CO gas that is most important component among car exhaust gases are illustrated in this investigation and those are presented for engineering construction of an underground parking pool. Prediction data of computational work is also validated by real measurements of concentration of CO gas.

A Numerical Investigation of Indoor Air Quality with CFD

  • Sin V. K;Sun H. I
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.207-208
    • /
    • 2003
  • Increasing interest in indoor air quality (IAQ) control has been found because of its serious effect on human health. To evaluate IAQ, thermal comfort in terms of temperature and velocity distributions of indoor air has to be analyzed in detail. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In this paper, we present a discussion on the proper location of the air-conditioner in order to obtain good thermal comfort for occupant of a typical bedroom in Macao. A set of carefully designed numerical experiments is run with the Computational Fluid Dynamics (CFD) software FLOVENT 3.2 [1]. Reynolds averaged Navier-Stokes equations are solved with finite volume technique and turbulence effects upon the mean flow characteristics is modeled with the k - & model. Assumption of steady state environment is made and only convective and conductive heat transfer from the occupant and air-conditioner are being concerned.

  • PDF

AERODYNAMIC ANALYSIS ON LEADING-EDGE SWEEPBACK ANGLES OF FLYING-WING CONFIGURATIONS (전익기 형상의 앞전후퇴각 변화에 따른 공력해석)

  • Lee, J.M.;Chang, J.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.48-55
    • /
    • 2006
  • A computational study was carried out in order to investigate aerodynamic characteristics on leading edge sweepback angles of Flying-Wing configurations. The viscous-compressible Navire-Stokes equation and Spalart-Allmaras turbulence model of the commercial CFD code were adopted for this computation analysis. This investigation examined aerodynamic characteristics of three different types of leading edge sweepback angles: $30^{\circ}C,\;35^{\circ}C\;and\;40^{\circ}C$. The freestream Mach number was M=0.80 and the angle of attack ranged from ${\alpha}=0^{\circ}C\;to\;{\alpha}=20^{\circ}C$. The results show that the increases in sweepback angle of the Flying-Wing configuration creates more efficient aerodynamic performance.

ANALYSIS ON THE DYNAMIC STALL OVER AN OSCILLATING AIRFOIL USING TRANSITION TRANSPORT EQUATIONS (천이 전달 방정식을 이용한 진동하는 익형의 동적 실속의 해석)

  • Jeon, S.E.;Sa, J.H.;Park, S.H.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Numerical investigation on the dynamic stall over an oscillating airfoil is presented. A Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with transition transport equations for the natural transition. Computational results considering the turbulent transition are compared with the fully turbulent computations and the experimental data. Results with transition prediction show closer correlation with the experimental data than those with the fully turbulent assumption, especially in the reattachment region.

Effect of Fluid Mesh Modeling on Surface Ship Shock Response under Underwater Explosion

  • Lee, Sang-Gab;Kwon, Jeong-Il;Chung, Jung-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.351-358
    • /
    • 2001
  • In this study, for the investigation of effects of several parameters, such as fluid mesh boundary size, cylinder or block shape, dimensions of depth, breadth and length at free suface, and fluid mesh element size to the depth direction on a reliable shock response of finite element model under underwater explosion with consideration of the bulk cavitation analysis of a simplified surface ship was carried out using the LS-DYNA3D/USA code. The shock responses were not much affected by the fluid mesh parameters. The computational time was greatly dependent on the number of DAA boundary segments. It is desirable to reduce the DAA boundary segments in the fluid mesh model, and it is not necessary to cover the fluid mesh boundary to or beyond the bulk cavitation zone just for the concerns about an initial shock wave response. It is also the better way to prefer cylinder type of the fluid mesh model to the block one.

  • PDF

Computational Investigation of Similarity Law and Wind Tunnel Testing for Side Jet Influence on Supersonic Missile Aerodynamics (초음속 유도탄의 측추력기 작동시 풍동실험을 위한 CFD 해석 연구)

  • Hong S. K.;Sung W. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.41-46
    • /
    • 2002
  • Computational study has been undertaken to investigate the aerodynamic influence of side jet on a supersonic missile and to find a similarity condition between the flight condition and the wind tunnel testing. Tasks were peformed to validate the existing Raytheon test body with side jet, to simulate the flow inside the supersonic wind tunnel, and to compare the flow fields between the missile in free flight and that in the wind tunnel. Then sub-scale model of body-tail configuration was analyzed to estimate the influence of the side jet on the missile components. It is found that the influence of side jet is not as significant on the tail region as on the body surface and a simple algebraic formula for aerodynamic coefficients accounting for the side jet as a point force may be cautiously utilized in setting up control logic.

  • PDF

NUMERICAL INVESTIGATION OF UNSTEADY CAVITATING FLOW ON A THREE-DIMENSIONAL TWISTED HYDROFOIL (3차원 비틀어진 날개 주위의 비정상 공동 유동에 대한 수치적 연구)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.37-46
    • /
    • 2011
  • Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. As a verification test of the computational method, non-cavitating and cavitating flows over a modified NACA66 foil section were simulated and validated against existing experimental data. The numerical uncertainties of forces and pressure were evaluated for three levels of mesh resolution. The computed pressure on the foil and the cavity shedding behavior were validated by comparing with existing experimental data. The cavity shedding dynamics by re-entrant jets from the end and sides of the cavity were investigated.