• Title/Summary/Keyword: computational geometry

Search Result 838, Processing Time 0.025 seconds

COMPUTATION OF SOUND SCATTERING IN 3D COMPLEX GEOMETRY BY BRINKMAN PENALIZATION METHOD (Brinkman Penalization Method를 통한 복잡한 3D 형상 주위의 음향 전파 연구)

  • Lee, S.H.;Lee, J.B.;Kim, J.U.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • Sound scattering in 3D complex geometry is difficult to model with body-fitted grid. Thus Brinkman Penalization method is used to compute sound scattering in 3D complex geometry. Sound propagation of monitor/TV is studied. The sound field for monitor/TV is simulated by applying Brinkman Penalization method to Linearized Euler Equation. Solid Structure and ambient air are represented as penalty terms in Linearized Euler Equation.

Geometric Modeling of Honeycomb Structural Geometry for Solid Freeform Fabrication (신속성형기술 전용 벌집구조 형상 모델링 기술 개발)

  • 지해성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.180-189
    • /
    • 1999
  • Solid freeform fabrication technology, widely known as rapid prototyping an rapid tooling, can create physical part directly from digital model by accumulating layers of a given material. Providing a tremendous flexibility of a part geometry that they can fabricate, these technologies present a opportunity or the creation of new products that can not be made with existing technologies. For this to be possible, however, various design environments including different fabrication processes needs to be considered at the time of design, and finding an appropriate design solution for the new product by combining necessary design communications become increasingly complex as environmental condition become diverse. This paper proposes a geometric modeling paradigm for design and fabrication of a new product, honeycomb structural geometry.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Machining Feature Recognition with Intersection Geometry between Design Primitives (설계 프리미티브 간의 교차형상을 통한 가공 피쳐 인식)

  • 정채봉;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Producing the relevant information (features) from the CAD models of CAM, called feature recognition or extraction, is the essential stage for the integration of CAD and CAM. Most feature recognition methods, however, have problems in the recognition of intersecting features because they do not handle the intersection geometry properly. In this paper, we propose a machining feature recognition algorithm, which has a solid model consisting of orthogonal primitives as input. The algorithm calculates candidate features and constitutes the Intersection Geometry Matrix which is necessary to represent the spatial relation of candidate features. Finally, it recognizes machining features from the proposed candidate features dividing and growing systems using half space and Boolean operation. The algorithm has the following characteristics: Though the geometry of part is complex due to the intersections of design primitives, it can recognize the necessary machining features. In addition, it creates the Maximal Feature Volumes independent of the machining sequences at the feature recognition stage so that it can easily accommodate the change of decision criteria of machining orders.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

A COMPUTATIONAL APPROACH TO DESIGN THE GEOMETRY OF THE AIR-TWIST NOZZLE (Air-twist 노즐 형상 설계의수치적 연구)

  • Juraeva, M.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.67-70
    • /
    • 2010
  • Spandex yarn requires a twisting process during winding and unwinding processes at the textile industry. The air-twist nozzle is widely used as part of the winding and unwinding. This paper describes computational approach to design the geometry of the air-twist nozzle. The nozzle has circular yarn-channel and the air-inlet which is perpendicularly connected to the yarn-channel with yarn-loading slit. The air-inlet of the nozzle is designed while measurements of the yarn-channel are fixed. The airflow inside the air-twist nozzle is simulated by using Computational Fluid Dynamic model. The Ansys CFX was used to perform steady simulations of the airflow for the air-twisting process. The vortical structure and the airflow pattern such as velocity streamline, vorticity, velocity of the air-twist nozzle are discussed. Computational results are compared with experimental results in this paper.

  • PDF

BOOLEAN GEOMETRY (3)

  • Kim, Chang-Bum
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.349-356
    • /
    • 1998
  • We give the new formulas counting the total number of all lines planes and tetrahedrons in the n-dimensional Boolean space.

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

THE FORMULATION OF LINEAR THEORY OF A REFLECTED SHOCK IN CYLINDRICAL GEOMETRY

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.543-559
    • /
    • 2002
  • In this paper we formulate the linear theory for compressible fluids in cylindrical geometry with small perturbation at the material interface. We derive the first order equations in the smooth regions, boundary conditions at the shock fronts and the contact interface by linearizing the Euler equations and Rankine-Hugoniot conditions. The small amplitude solution formulated in this paper will be important for calibration of results from full numerical simulation of compressible fluids in cylindrical geometry.