• 제목/요약/키워드: computational fluid dynamics

검색결과 2,915건 처리시간 0.042초

전산유체역학을 이용한 아이스하버식 어도 내 월류부의 흐름특성에 관한 연구 (A Study on Hydraulic Characteristics of rollway of Ice-Harbor Type Fishway Using Computational Fluid Dynamics)

  • 고선호
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.618-622
    • /
    • 2015
  • 어도(fishway)란 강이 댐과 같은 인공물로 막혀있을 때 물고기가 지나갈 수 있도록 만든 통로이다. 본 연구에서는 전산유체해석 프로그램인 EDISON_CFD 시스템을 활용하여 아이스하버식 어도 내 월류부(rollway)에서 유체의 수직흐름특성을 분석하였다. 어류는 소상과 강하시 어도 내의 흐름에 민감하므로, 흐름에 영향을 주는 요인을 분석하는 것은 중요한 문제이다 어도는 2차원으로 간략화하여 모델링하였으며, 강의 유속, 어도의 기울기, 월류부 높이를 변화시키며 이들이 어도 내의 흐름특성과 어떤 관계가 있는지 분석하였다. 또 속도 증가에 따른 수면파의 파장 변화를 프로우드수와 연관지어 설명하였고, 레이놀즈수가 어도 내의 흐름특성과 밀접한 관련이 있음을 확인하였으며 기 설치된 어도의 문제점을 보완할 수 있는 방법을 제시하였다.

  • PDF

전산유체역학을 이용한 스프링클러헤드의 형상 개선 (An improvement of sprinkler head design using computational fluid dynamics)

  • 박단아
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.606-611
    • /
    • 2015
  • 초기 화재 진압을 위해 사용되는 스프링클러(sprinkler) 설비는 스프링클러헤드의 형태에 따라 살수 분포가 달라진다. 화점의 발생 위치는 특정하기 어려우므로 스프링클러의 살수범위(spray coverage)가 넓게 퍼지는 형태가 되는 것이 확률적으로 가장 큰 효율성을 가진다. 본 연구에서는 EDISON_전산열유체 시스템의 다상유동 해석자를 활용하여 스프링클러헤드의 형태에 따라 살수각과 국부 유동장을 분석하였다. 3차원 형상을 가지는 스프링클러헤드 형상을 2차원 단면으로 나누어 해석하였으며 프레임(frame)과 반사판(deflector)의 형상에 따른 유동장의 변화를 살펴보았고 살수각(spray angle)을 정량적으로 나타내었다. 최종적으로 최대 최소의 살수각을 갖는 2차원 스프링클러헤드를 형상화하였고 이를 중첩하여 살수 범위를 넓게 갖는 스프링클러헤드를 3차원 모델링하였다.

  • PDF

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design

  • Yee, Jurng-Jae;Kim, Young-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.62-68
    • /
    • 2001
  • It is a serous subject for energy conservation to prevent the energy loss caused by the mixture of heated and cooled air jets in perimeter and interior zone of a building operated with tow kinds of air-conditioning system simultaneously. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of mixing loss and to propose a evaluation method for it. By using the dynamic heat load calculation, heat extraction load of a typical office building in Busan are calculated. According to the results, numerical simulations based on CFD(Computational Fluid Dynamics) were performed in order to evaluate mixing loss in the physical size of HVAC system. Then, the distributions of air temperature and airflow patterns according to the differences of set-point temperature are analyzed to grasp relations how to influence mixing loss.

  • PDF

Numerical Simulation of Flow and Dross Particle Transfer in a 55% Al-Zn Pot

  • Kim, Hwang Suk;Kim, Jong Gi;Yoon, Seung Chae;Im, Hee Joong;Moon, Man Been
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.71-76
    • /
    • 2012
  • Computational fluid dynamics (CFD) is nowadays a powerful and reliable tool for simulating different flow processes and temperature. CFD is used to analyze the various pot geometries and operative variables in 55% Al-Zn pot of CGL. In this research, different strip velocities were assumed and then shown the flow pattern in the pot that was similar in the different strip velocities. Temperature distribution in the pot depended on inductors and inlet strip temperature at the steady condition. Generation of dross particles and transport models were considered to describe dross particles evolution inside the pot. In order to observe dross influence by scrap location, dross particles were generated upon the sink roll. Floating time of dross particles is different by scraper locations above the sink roll.

유공벽을 이용한 우류식 염소접촉조 사류 저감 방안 연구 (Study on Methodology for Reducing Dead Zone Flow within Chlorine Contactor Installing Porous Baffles)

  • 박현오;박노석;차민환;김사동;원찬희
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.519-525
    • /
    • 2010
  • From the results of tracer test for the existing chlorine contactor in Y water treatment plant, $T_{10}$ and $T_{10}$/T were calculated as 130 min and 0.16, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by T10 and $T_{10}$/T, and disinfection performance. In this study, in order to reduce dead zone within contactor, the installation of porous baffles in the near of each corner was suggested and verified using transient CFD(Computational Fluid Dynamics) simulation technique and tracer tests on dynamic condition. From the results of simulation and tracer tests, it was revealed that porous baffles installed have been effective to reduce dead zone within contactor, and increase plug flow fraction.

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • 제3권2호
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Simulation and Damage Analysis of an Accidental Jet Fire in a High-Pressure Compressed Pump Shelter

  • Jang, Chang Bong;Choi, Sang-Won
    • Safety and Health at Work
    • /
    • 제8권1호
    • /
    • pp.42-48
    • /
    • 2017
  • Background: As one of the most frequently occurring accidents in a chemical plant, a fire accident may occur at any place where transfer or handling of combustible materials is routinely performed. Methods: In particular, a jet fire incident in a chemical plant operated under high pressure may bring severe damage. To review this event numerically, Computational Fluid Dynamics methodology was used to simulate a jet fire at a pipe of a compressor under high pressure. Results: For jet fire simulation, the Kemeleon FireEx Code was used, and results of this simulation showed that a structure and installations located within the shelter of a compressor received serious damage. Conclusion: The results confirmed that a jet fire may create a domino effect that could cause an accident aside from the secondary chemical accident.

CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증 (Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification)

  • 김혜민;권성안;이상준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

CFD해석에 의한 침실 호흡역의 환기효율 분석 (Analysis on ventilation efficiency by CFD simulation for breathing zone in bed room)

  • 유복희;윤정숙
    • KIEAE Journal
    • /
    • 제2권3호
    • /
    • pp.11-16
    • /
    • 2002
  • Indoor air environment is one of the most important factors that affect resident's health and comfort level. In this paper, the influence of ventilation efficiency with different types of furniture arrangement at breathing zone in a room was analyzed by numerical simulation based on computational fluid dynamics(CFD). The furniture layout of students' bedroom have been classified by three different patterns so that SVE3(scale for ventilation efficiency3) in the rooms was analyzed for air flow distribution. According to the results of the study, SVE3 has the maximum value in spaces between furnitures and each comer of the room. The furniture arrangement influences the ventilation efficiency. It was con finned that ventilation effective in a room is not uniformly distributed as compared the breathing zone with all the area in a room. It means that a study of ventilation efficiency was considered relatively with target zone(a residential or breathing zone) and all the area in a space.

수리구조 개선을 통한 다중 펌프 흡수정에서 발생하는 보텍스 방지 대책 수립에 관한 연구 (Modifications to Hydraulic Structures for Anti-submerged Vortex in a Multi Pump Intake using CFD simulation Technique)

  • 박노석;김성수;정우창;김종오
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.31-39
    • /
    • 2011
  • In order to suggest the methodology for achieving anti-vortex device within multi pump intake well, CFD(Computational Fluid Dynamics) simulation were conducted for two alternative suggestions. Multi-intake sump model with anti-vortex device basins were designed and the characteristics of submerged vortex were investigated in the flow field by numerical simulation. From the results of simulations, to install the horizontal plate and vertical cross plates within basins were effective for preventing air-induction vortex.