Browse > Article
http://dx.doi.org/10.14773/cst.2012.11.3.071

Numerical Simulation of Flow and Dross Particle Transfer in a 55% Al-Zn Pot  

Kim, Hwang Suk (Hyundai HYSCO Research and Development Center)
Kim, Jong Gi (Hyundai HYSCO Research and Development Center)
Yoon, Seung Chae (Hyundai HYSCO Research and Development Center)
Im, Hee Joong (Hyundai HYSCO Research and Development Center)
Moon, Man Been (Hyundai HYSCO Research and Development Center)
Publication Information
Corrosion Science and Technology / v.11, no.3, 2012 , pp. 71-76 More about this Journal
Abstract
Computational fluid dynamics (CFD) is nowadays a powerful and reliable tool for simulating different flow processes and temperature. CFD is used to analyze the various pot geometries and operative variables in 55% Al-Zn pot of CGL. In this research, different strip velocities were assumed and then shown the flow pattern in the pot that was similar in the different strip velocities. Temperature distribution in the pot depended on inductors and inlet strip temperature at the steady condition. Generation of dross particles and transport models were considered to describe dross particles evolution inside the pot. In order to observe dross influence by scrap location, dross particles were generated upon the sink roll. Floating time of dross particles is different by scraper locations above the sink roll.
Keywords
computational fluid dynamics (CFD); dross particle; Al-Zn pot; flow velocity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Nasser, A. Yadav, P. Pathak, and T. Altan, J. Mater. Proc. Tech., 210, 429 (2010).   DOI   ScienceOn
2 I. Mejia, A. Bedolla-Jacuinde, C. Maldonado, and J. M. Cabrera, Mater. Sci. Eng. A, 528, 4468 (2011).   DOI   ScienceOn
3 C. Nikhare, P. D. Hodgson, and M. Weiss, Mater. Sci. Eng. A, 528, 3010 (2011).   DOI   ScienceOn
4 T. Uemori, T. Okada, and F. Yoshida, Key Eng. Mater., 177, 497 (2000).
5 D. W. Leu, J. Mater. Proc. Tech., 66, 9 (1997).   DOI   ScienceOn
6 R. M. Cleveland and A. K. Ghosh, Inter. J. Plasticity, 18, 769 (2002).   DOI   ScienceOn
7 J. B. Kim and S. K. Lee, Corros. Sci. Tech., 26, 191 (1997).
8 J. B. Kim and S. K. Lee, Corros. Sci. Tech., 30, 247 (2001).
9 D. Phelan, Galvatech, 6, 961, (2004).
10 C. H. Ellen and C. V. Tu, J. Fluids Eng., 106, 399 (1984).   DOI
11 Y. H. Kim, Y. W. Cho, S. H. Chung, J. D. Shim, and H. Y. Ra, ISIJ, 44, 369 (2005).
12 Y. H. Kim, Y. W. Cho, S. H. Chung, J. D. Shim, and H. Y. Ra, ISIJ, 40, 706 (2000).   DOI   ScienceOn
13 S. J. Lee, S.Kim, M. S. Koh, and J.H. Choi, ISIJ, 42, 407 (2002).   DOI   ScienceOn
14 F. Bezzo, S. Macchietto, and C. C. Pantelides, Com. Chem. Eng., 28, 501 (2004).   DOI   ScienceOn
15 M. A. Hoef, M. S. Annaland, and J. A. M Kuipers, Chem. Eng. Sci., 59, 5157 (2004).   DOI   ScienceOn
16 Y. Takeishi and H. Morino, ISIJ, 40, 1127 (2000).   DOI   ScienceOn
17 K. C. Ro and H. S. Ryou, J. Com. Fluids. Eng., 15, 1 (2010).
18 N. G. Wright and G. J. Easom, Appl. Math. Model., 27, 1013 (2003).   DOI   ScienceOn