• Title/Summary/Keyword: computational design

Search Result 6,491, Processing Time 0.025 seconds

Computational Approaches for the Aerodynamic Design and Optimization

  • Lee, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.28-29
    • /
    • 2006
  • Computational approaches for the aerodynamic design and optimization are introduced. In this paper the aerodynamic design methods and applications, which have been applied to various aerospace vehicles at Konkuk University, are introduced. It is shown that system approximation technique reduces computational cost for CFD analysis and improves efficiency for the design optimization process.

  • PDF

Design-Based Learning for Computational Thinking (Computational Thinking 향상을 위한 디자인기반 학습)

  • Kim, Soohwan;Han, Seonkwan
    • Journal of The Korean Association of Information Education
    • /
    • v.16 no.3
    • /
    • pp.319-326
    • /
    • 2012
  • In this paper, we studied a design-based learning for Computational Thinking in Computational Literacy. The design-based learning for computational thinking in computational literacy education started from a MIT media laboratory in 2011. We revised the design-based learning and applied it to educational field. We considered educational strategies and derived the implications, after teaching fourth grade gifted students. Moreover we conducted and analyzed a questionnaire survey, observations and interviews. As the result, the design-based learning in computational literacy is effective for creative computational thinking that students create their ideas and make a meaningful artifacts from it. We expect that this study provides the basic data to apply a design-based learning for computational thinking to Computer education.

  • PDF

An efficient procedure for lightweight optimal design of composite laminated beams

  • Ho-Huu, V.;Vo-Duy, T.;Duong-Gia, D.;Nguyen-Thoi, T.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.297-310
    • /
    • 2018
  • A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is efficient and provides better solutions than those acquired by the compared methods.

A Data-driven Approach for Computational Simulation: Trend, Requirement and Technology

  • Lee, Sunghee;Ahn, Sunil;Joo, Wonkyun;Yang, Myungseok;Yu, Eunji
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.123-130
    • /
    • 2018
  • With the emergence of a new paradigm called Open Science and Big Data, the need for data sharing and collaboration is also emerging in the computational science field. This paper, we analyzed data-driven research cases for computational science by field; material design, bioinformatics, high energy physics. We also studied the characteristics of the computational science data and the data management issues. To manage computational science data effectively it is required to have data quality management, increased data reliability, flexibility to support a variety of data types, and tools for analysis and linkage to the computing infrastructure. In addition, we analyzed trends of platform technology for efficient sharing and management of computational science data. The main contribution of this paper is to review the various computational science data repositories and related platform technologies to analyze the characteristics of computational science data and the problems of data management, and to present design considerations for building a future computational science data platform.

Optimum Design of a Cross Flow Fan (횡류팬의 최적설계방안)

  • Kim Dong-Hoon;Park Hyung-Koo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.50-57
    • /
    • 2003
  • Cross-flow fans are widely used in various applications, due to their large capacity of mass flow and size compactness. The flow field of the cross-flow fan is, however, complex and has many design parameters. Thus, the general design guide has not been sufficiently established yet and the design strategies of cross-flow fans have been mostly based on experiments. In the present study, the performance and their two-dimensional flow characteristics are numerically analyzed by using the STAR-CD(commercial computational fluid dynamics code). The simulation is done by varying the several design parameters such as the impeller blade shapes and the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally, some helpful guides for the optimum design of cross-flow fans are proposed.

Study of the Efficient Aerodynamic Shape Design Optimization Using the Approximate Reliability Method (근사신뢰도기법을 이용한 효율적인 공력 형상 설계에 관한 연구)

  • Kim Suwhan.;Kwon Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.187-191
    • /
    • 2004
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, single loop methods have been proposed. These need less function calls than that of RBDO but much more than that of DO. In this study, the approximate reliability method is proposed that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this method, the 3-D viscous aerodynamic shape design optimization with uncertainty is performed very efficiently.

  • PDF

Integrated Design System using MDO and Approximation Technique (MDO 통합 설계 시스템을 위한 근사기법의 활용)

  • 양영순;박창규;장범선;유원선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.275-283
    • /
    • 2004
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive Approximation, is a competent strategy via MDO framework systems.

  • PDF

A Parametric Approach to Feature-based Modeling (파라메트릭 접근방법에 의한 특징형상을 이용한 모델링)

  • 이재열;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.242-256
    • /
    • 1996
  • Although feature-based design is a promising approach to fully integrating CAD/CAM, current feature-based design approaches seldom provide methodologies to easily define and design features. This paper proposes a new approach to integrating parametric design with feature-based design to overcome those limitations by globally decomposing a design into a set of features and locally defining and positioning each feature by geometric constraints. Each feature is defined as a parametric shape which consists of a feature section, attributes, and a set of constraints. The generalized sketching and sweeping techniques are used to simplify the process of designing features. The proposed approach is knowledge-based and its computational efficiency in geometric reasoning is improved greatly. Parametrically designed features not only have the advantage of allowing users to efficiently perform design changes, but also provide designers with a natural design environment in which they can do their work more naturally and creatively.

  • PDF

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF