• Title/Summary/Keyword: computational algorithm

Search Result 4,398, Processing Time 0.036 seconds

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Augmented Reality System using Planar Natural Feature Detection and Its Tracking (동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템)

  • Lee, A-Hyun;Lee, Jae-Young;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • Typically, vision-based AR systems operate on the basis of prior knowledge of the environment such as a square marker. The traditional marker-based AR system has a limitation that the marker has to be located in the sensing range. Therefore, there have been considerable research efforts for the techniques known as real-time camera tracking, in which the system attempts to add unknown 3D features to its feature map, and these then provide registration even when the reference map is out of the sensing range. In this paper, we describe a real-time camera tracking framework specifically designed to track a monocular camera in a desktop workspace. Basic idea of the proposed scheme is that a real-time camera tracking is achieved on the basis of a plane tracking algorithm. Also we suggest a method for re-detecting features to maintain registration of virtual objects. The proposed method can cope with the problem that the features cannot be tracked, when they go out of the sensing range. The main advantage of the proposed system are not only low computational cost but also convenient. It can be applicable to an augmented reality system for mobile computing environment.

Review on the Three-Dimensional Inversion of Magnetotelluric Date (MT 자료의 3차원 역산 개관)

  • Kim Hee Joon;Nam Myung Jin;Han Nuree;Choi Jihyang;Lee Tae Jong;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • This article reviews recent developments in three-dimensional (3-D) magntotelluric (MT) imaging. The inversion of MT data is fundamentally ill-posed, and therefore the resultant solution is non-unique. A regularizing scheme must be involved to reduce the non-uniqueness while retaining certain a priori information in the solution. The standard approach to nonlinear inversion in geophysis has been the Gauss-Newton method, which solves a sequence of linearized inverse problems. When running to convergence, the algorithm minimizes an objective function over the space of models and in the sense produces an optimal solution of the inverse problem. The general usefulness of iterative, linearized inversion algorithms, however is greatly limited in 3-D MT applications by the requirement of computing the Jacobian(partial derivative, sensitivity) matrix of the forward problem. The difficulty may be relaxed using conjugate gradients(CG) methods. A linear CG technique is used to solve each step of Gauss-Newton iterations incompletely, while the method of nonlinear CG is applied directly to the minimization of the objective function. These CG techniques replace computation of jacobian matrix and solution of a large linear system with computations equivalent to only three forward problems per inversion iteration. Consequently, the algorithms are efficient in computational speed and memory requirement, making 3-D inversion feasible.

Exploration of Optimal Multi-Core Processor Architecture for Physical Modeling of Plucked-String Instruments (현악기의 물리적 모델링을 위한 최적의 멀티코어 프로세서 아키텍처 탐색)

  • Kang, Myeong-Su;Choi, Ji-Won;Kim, Yong-Min;Kim, Jong-Myon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.281-294
    • /
    • 2011
  • Physics-based sound synthesis usually requires high computational costs and this results in a restriction of its use in real-time applications. This motivates us to implement the sound synthesis algorithm of plucked-string instruments using multi-core processor architectures and determine the optimal processing element (PE) configuration for the target instruments. To determine the optimal PE configuration, we evaluate the impacts of a sample-per-processing element (SPE) ratio that is defined as the amount of sample data directly mapped to each PE on system performance and both area and energy efficiencies using architectural and workload simulations. For the acoustic guitar, the highest area and energy efficiencies are achieved at a SPE ratio of 5,513 and 2,756, respectively, for the synthesis of musical sounds sampled at 44.1 kHz. In the case of the classical guitar, the maximum area and energy efficiencies are achieved at a SPE ratio of 22,050 and 5,513, respectively. In addition, the synthetic sounds were very similar to original sounds in their spectra. Furthermore, we conducted MUSHRA subjective listening test with ten subjects including nine graduate students and one professor from the University of Ulsan, and the evaluation of the synthetic sounds was excellent.

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF

Bit Interleaver Design of Ultra High-Order Modulations in DVB-T2 for UHDTV Broadcasting (DVB-T2 기반의 UHDTV 방송을 위한 초고차 성상 변조방식의 비트 인터리버 설계)

  • Kang, In-Woong;Kim, Youngmin;Seo, Jae Hyun;Kim, Heung Mook;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.195-205
    • /
    • 2014
  • The ultra-high definition television (UHDTV) has been considered as a next generation broadcsating service. However the conventional digital terrestrial transmission system cannot afford the required transmission data rate of UHDTV, and thus adopting ultra-high order constellation, such as 4096-QAM, into the conventional DTT systems has been studied. In particular, when the ultra-high order constellation is adopted into the digital video broadcasting-2nd generation terrestrial (DVB-T2) unequal-error protection (UEP) properties of a codeword of an error correction coding and ultra-high order constellations should be properly matched by bit mapper in order to enhance the decoding performance. Because long codeword results in a heavy computational complexity to design the bit mapper, the DVB-T2 divided it into cascaded blocks, the bit interleaver and the bit-to-cell DEMUX, and there have been many researches related to each block. However, there are few published study related to design methodology of bit interleaver. In this respect, this paper proposes a design methodology of the bit interleaver and presents bit interleavers of 1024-QAM and 4096-QAM according to the proposed design algorithm. The newly designed interleavers improved the decoding performance of the error correction coding by maximally 0.6 dB SNR over both of AWGN and random fading channel.

Algorithms for Indexing and Integrating MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 인덱싱 및 결합 알고리즘)

  • Song, Chi-Ill;Nang, Jong-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a new indexing mechanism for MPEG-7 visual descriptors, especially Dominant Color and Contour Shape descriptors, that guarantees an efficient similarity search for the multimedia database whose visual meta-data are represented with MPEG-7. Since the similarity metric used in the Dominant Color descriptor is based on Gaussian mixture model, the descriptor itself could be transform into a color histogram in which the distribution of the color values follows the Gauss distribution. Then, the transformed Dominant Color descriptor (i.e., the color histogram) is indexed in the proposed indexing mechanism. For the indexing of Contour Shape descriptor, we have used a two-pass algorithm. That is, in the first pass, since the similarity of two shapes could be roughly measured with the global parameters such as eccentricity and circularity used in Contour shape descriptor, the dissimilar image objects could be excluded with these global parameters first. Then, the similarities between the query and remaining image objects are measured with the peak parameters of Contour Shape descriptor. This two-pass approach helps to reduce the computational resources to measure the similarity of image objects using Contour Shape descriptor. This paper also proposes two integration schemes of visual descriptors for an efficient retrieval of multimedia database. The one is to use the weight of descriptor as a yardstick to determine the number of selected similar image objects with respect to that descriptor, and the other is to use the weight as the degree of importance of the descriptor in the global similarity measurement. Experimental results show that the proposed indexing and integration schemes produce a remarkable speed-up comparing to the exact similarity search, although there are some losses in the accuracy because of the approximated computation in indexing. The proposed schemes could be used to build a multimedia database represented in MPEG-7 that guarantees an efficient retrieval.

A Design for Extension Codec based on Legacy Codec (레거시 코덱 기반 확장 코덱 설계)

  • Young, Su Heo;Bang, Gun;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.509-520
    • /
    • 2015
  • A design for the merge mode of three dimensional High Efficiency Video Coding (3D-HEVC) is proposed in this paper. The proposed design can reduce the implementation complexity by removing the duplicated modules of the HEVC. For the extension codec, the implementation complexity is as crucial as coding efficiency, meaning if possible, extension codec needs to be easily implemented through by reusing the design of the legacy codec as-is. However, the existing merging process of 3D-HEVC had been built-in integrated in the inside of the HEVC merging process. Thus the duplicated merging process of HEVC had to be fully re-implemented in the 3D-HEVC. Consequently the implementation complexity of the extension codec was very high. The proposed 3D-HEVC merge mode is divided into following two stages; the process to reuse the HEVC modules without any modification; and the reprocessing process for newly added and modified merging modules in 3D-HEVC. By applying the proposed method, the re-implemented HEVC modules, which accounted for 51.4% of 3D-HEVC merge mode confirmed through the operational analysis of algorithm, can be eliminated, while maintaining the same coding efficiency and computational complexity.

Study of the Flush Air Data Sensing System for Subsonic and Supersonic Flows (아음속 및 초음속 유동의 플러시 대기자료 측정장치 연구)

  • Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.831-840
    • /
    • 2019
  • Flush Air Data Sensing system (FADS) estimates air data states using pressure data measured at the surface of flight vehicles. The FADS system does not require intrusive probes, so it is suitable for high performance aircrafts, stealth vehicles, and hypersonic flight vehicles. In this study, calibration procedures and solution algorithms of the FADS for a sphere-cone shape vehicle are presented for the prediction of air data from subsonic to supersonic flights. Five flush pressure ports are arranged on the surface of nose section in order to measure surface pressure data. The algorithm selects the concept of separation for the prediction of flow angles and the prediction of pressure related variables, and it uses the pressure model which combines the potential flow solution for a subsonic flow with the modified Newtonian flow theory for a hypersonic flow. The CFD code which solves Euler equations is developed and used for the construction of calibration pressure data in the Mach number range of 0.5~3.0. Tests are conducted with various flight conditions for flight Mach numbers in the range of 0.6~3.0 and flow angles in the range of -10°~+10°. Air data such as angle of attack, angle of sideslip, Mach number, and freestream static pressure are predicted and their accuracies are analyzed by comparing predicted data with reference data.

Efficient Implementation of SVM-Based Speech/Music Classifier by Utilizing Temporal Locality (시간적 근접성 향상을 통한 효율적인 SVM 기반 음성/음악 분류기의 구현 방법)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • Support vector machines (SVMs) are well known for their pattern recognition capability, but proper care should be taken to alleviate their inherent implementation cost resulting from high computational intensity and memory requirement, especially in embedded systems where only limited resources are available. Since the memory requirement determined by the dimensionality and the number of support vectors is generally too high for a cache in embedded systems to accomodate, frequent accesses to the main memory occur inevitably whenever the cache is not able to provide requested data to the processor. These frequent accesses to the main memory result in overall performance degradation and increased energy consumption because a memory access typically takes longer and consumes more energy than a cache access or a register access. In this paper, we propose a technique that reduces the number of main memory accesses by optimizing the data access pattern of the SVM-based classifier in such a way that the temporal locality of the accesses increases, fully utilizing data loaded into the processor chip. With experiments, we confirm the enhancement made by the proposed technique in terms of the number of memory accesses, overall execution time, and energy consumption.