• 제목/요약/키워드: computation time reduction

검색결과 221건 처리시간 0.025초

다관절 로봇의 계층적 제어를 위한 HQP의 연산 비용 감소 방법 (Computational Cost Reduction Method for HQP-based Hierarchical Controller for Articulated Robot)

  • 박민규;김동환;오용환;이이수
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.16-24
    • /
    • 2022
  • This paper presents a method that can reduce the computational cost of the hierarchical quadratic programming (HQP)-based robot controller. Hierarchical controllers can effectively manage articulated robots with many degrees of freedom (DoFs) to perform multiple tasks. The HQP-based controller is one of the generic hierarchical controllers that can provide a control solution guaranteeing strict task priority while handling numerous equality and inequality constraints. However, according to a large amount of computation, it can be a burden to use it for real-time control. Therefore, for practical use of the HQP, we propose a method to reduce the computational cost by decreasing the size of the decision variable. The computation time and control performance of the proposed method are evaluated by real robot experiments with a 15 DoFs dual-arm manipulator.

Optimal Decomposition of Convex Structuring Elements on a Hexagonal Grid

  • Ohn, Syng-Yup
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권3E호
    • /
    • pp.37-43
    • /
    • 1999
  • In this paper, we present a new technique for the optimal local decomposition of convex structuring elements on a hexagonal grid, which are used as templates for morphological image processing. Each basis structuring element in a local decomposition is a local convex structuring element, which can be contained in hexagonal window centered at the origin. Generally, local decomposition of a structuring element results in great savings in the processing time for computing morphological operations. First, we define a convex structuring element on a hexagonal grid and formulate the necessary and sufficient conditions to decompose a convex structuring element into the set of basis convex structuring elements. Further, a cost function was defined to represent the amount of computation or execution time required for performing dilations on different computing environments and by different implementation methods. Then the decomposition condition and the cost function are applied to find the optimal local decomposition of convex structuring elements, which guarantees the minimal amount of computation for morphological operation. Simulation shows that optimal local decomposition results in great reduction in the amount of computation for morphological operations. Our technique is general and flexible since different cost functions could be used to achieve optimal local decomposition for different computing environments and implementation methods.

  • PDF

계통 분할에 의한 계층적 측정 시스템 설계 (Hierarchical Measurement System Design by System Partitioning)

  • 문영현;최상봉;박영문;추진부
    • 대한전기학회논문지
    • /
    • 제37권5호
    • /
    • pp.261-271
    • /
    • 1988
  • 본 논문에서는 계통을 분할하여 측정시스템을 설계하는 계층적 알고리즘을 제시 하였다. 계통이 대규모화 함에 따라 최적측정시스템을 위한 기존의 알고리즘들은 과다한 컴퓨터 기억용량을 여구하게 되었다. 본 알고리즘은 이 문제점을 해결하기 위해 계통을 분할하여 계통 분할시 발생되는 경계측정점을 등가화하는 계층적 방법을 이용하였다. 이 방법을 측정 시스템 설계에 적용한 결과 계산시간과 컴퓨터 기억용량에서 상당한 감소 효과를 보았으며 대규모 계ㅖ통적용에 잇어서도 만족할 만한 정확도를 얻었다. 또한 제시된 알고리즘을 여러 계통에 적용하여 성계총 적용 가능성을 보였다.

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.

항공기 형상 최적설계 프로세스를 위한 표면 격자 자동 생성 프로그램의 개발 (DEVELOPMENT OF AUTOMATIC PANEL GENERATION PROGRAM FOR AIRCRAFT SHAPE OPTIMIZATION PROCESS)

  • 김경남;김병수
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.41-46
    • /
    • 2015
  • This paper describes study results on the development of an automatic program for generating surface-panel grid for the aircraft optimal design. The aerodynamic analysis is combined into a PIDO tool in conjunction with a number of programs in order to integrate processes for the optimal design. Due to design optimization's iterative feature, it may require lots of time and cost. To relieve this problem, cost-reduction of computation time for aerodynamic analysis is pursued by using the Panel-method, and reduction of grid generation time by automating surface panelling.

An improved algorithm for the exchange heuristic for solving multi-project multi-resource constrained scheduling with variable-intensity activities

  • Yu, Jai-Keon;Kim, Won-Kyung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1993년도 춘계공동학술대회 발표논문 및 초록집; 계명대학교, 대구; 30 Apr.-1 May 1993
    • /
    • pp.343-352
    • /
    • 1993
  • In this study, a modified algorithm for the exchange heuristic is developed and applied to a resource-constrained scheduling problem. The problem involves multiple projects and multiple resource categories and allows flexible resource allocation to each activity. The objective is to minimize the maximum completion time. The exchange heuristkc is a multiple pass algorithm which makes improvements upon a given initial feasible schedule. Four different modified algorithms are proposed. The original algorithm and the new algorithms were compared through an experimental investigation. All the proposed algorithms reduce the maximum completion time much more effectively than the original algorithm. Especially, one of four proposed algorithms obviously outperforms the other three algorithms. The algorithm of the best performance produces significantly shorter schedules than the original algorithm, though it requires up to three times more computation time. However, in most situations, a reduction in schedule length means a significant reduction in the total cost.

  • PDF

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

전력손실 감소를 위한 정보전파응용구조 신경회로망 (Information Propagation Neural Networks for Reduction of Power-Loss)

  • 김종만;김원섭;임성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2546-2549
    • /
    • 2004
  • For Reduction of Power-Loss, a new Lateral Information Propagation Networks(LIPN) has been proposed. Damaged insulator is reduced the rate of insulation extremely, and taken the results dirty and injured. It is necessary to be actions that detect the damaged insulator and exchange the new one. And thus, we have designed the LIPN to be detected that insulators by the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interrelation is achieved. Through the results of simulation experiments, we difine the ability of real-time detecting the damaged insulators.

  • PDF